Classification and prediction of post-trauma outcomes related to PTSD using circadian rhythm changes measured via wrist-worn research watch in a large longitudinal cohort
UMass Chan Affiliations
Department of Emergency MedicineDocument Type
Journal ArticlePublication Date
2021-01-22Keywords
ActigraphyCircadian rhythms
mHealth
Photoplethysmography
Post-traumatic stress disorder
Wearables
Biomedical Devices and Instrumentation
Emergency Medicine
Mental Disorders
Musculoskeletal, Neural, and Ocular Physiology
Neuroscience and Neurobiology
Telemedicine
Metadata
Show full item recordAbstract
Post-Traumatic Stress Disorder (PTSD) is a psychiatric condition resulting from threatening or horrifying events. We hypothesized that circadian rhythm changes, measured by a wrist-worn research watch are predictive of post-trauma outcomes. APPROACH: 1618 post-trauma patients were enrolled after admission to emergency departments (ED). Three standardized questionnaires were administered at week eight to measure post-trauma outcomes related to PTSD, sleep disturbance, and pain interference with daily life. Pulse activity and movement data were captured from a research watch for eight weeks. Standard and novel movement and cardiovascular metrics that reflect circadian rhythms were derived using this data. These features were used to train different classifiers to predict the three outcomes derived from week-eight surveys. Clinical surveys administered at ED were also used as features in the baseline models. RESULTS: The highest cross-validated performance of research watch-based features was achieved for classifying participants with pain interference by a logistic regression model, with an area under the receiver operating characteristic curve (AUC) of 0.70. The ED survey-based model achieved an AUC of 0.77, and the fusion of research watch and ED survey metrics improved the AUC to 0.79. SIGNIFICANCE: This work represents the first attempt to predict and classify post-trauma symptoms from passive wearable data using machine learning approaches that leverage the circadian desynchrony in a potential PTSD population.Source
Cakmak AS, Perez Alday EA, Da Poian G, Bahrami Rad A, Metzler TJ, Neylan TC, House SL, Beaudoin FL, An X, Stevens J, Zeng D, Linnstaedt SD, Jovanovic T, Germine LT, Bollen KA, Rauch SL, Lewandowski C, Hendry PL, Sheikh S, Storrow AB, Musey PI, Haran JP, Jones CW, Punches BE, Swor RA, Gentile NT, Mcgrath ME, Seamon MJ, Mohiuddin K, Chang AM, Pearson C, Domeier RM, Bruce SE, O'Neil BJ, Rathlev NK, Sanchez LD, Pietrzak RH, Joormann J, Barch DM, Pizzagalli D, Harte SE, Elliott JM, Koenen KC, Ressler KJ, Kessler R, Li Q, Mclean SA, Clifford GD. Classification and prediction of post-trauma outcomes related to PTSD using circadian rhythm changes measured via wrist-worn research watch in a large longitudinal cohort. IEEE J Biomed Health Inform. 2021 Jan 22;PP. doi: 10.1109/JBHI.2021.3053909. Epub ahead of print. PMID: 33481725. Link to article on publisher's site
DOI
10.1109/JBHI.2021.3053909Permanent Link to this Item
http://hdl.handle.net/20.500.14038/29704PubMed ID
33481725Notes
Full author list omitted for brevity. For the full list of authors, see article.