A genome wide RNA interference screening method to identify host factors that modulate influenza A virus replication
Name:
Publisher version
View Source
Access full-text PDFOpen Access
View Source
Check access options
Check access options
UMass Chan Affiliations
Department of Microbiology and Physiological SystemsDocument Type
Journal ArticlePublication Date
2013-02-01Keywords
siRNA screeningAutomated siRNA transfection
Reverse transfection
Functional genomics
Host-virus interactions
Influenza A virus
Whole genome screen
Genetics and Genomics
Genomics
Molecular Biology
Molecular Genetics
Nucleic Acids, Nucleotides, and Nucleosides
Virology
Viruses
Metadata
Show full item recordAbstract
The use of genome wide RNA interference (RNAi) screens to investigate host-virals interactions has revealed unexpected connections that have improved our understanding of viral pathogenesis and cell biology. This work describes the use of an RNAi screening method employing an immunofluorescence image-based strategy and influenza A virus. We find this approach to be readily implemented, scalable and amenable to the direct evaluation of a variety of viral lifecycles.Source
Methods. 2013 Feb;59(2):217-24. doi: 10.1016/j.ymeth.2012.09.009. Link to article on publisher's site
DOI
10.1016/j.ymeth.2012.09.009Permanent Link to this Item
http://hdl.handle.net/20.500.14038/29769PubMed ID
23036328Related Resources
ae974a485f413a2113503eed53cd6c53
10.1016/j.ymeth.2012.09.009
Scopus Count
Collections
Related items
Showing items related by title, author, creator and subject.
-
Computational Approaches for the Analysis of Chromosome Conformation Capture Data and Their Application to Study Long-Range Gene Regulation: A DissertationLajoie, Bryan R. (2016-02-10)Over the last decade, development and application of a set of molecular genomic approaches based on the chromosome conformation capture method (3C), combined with increasingly powerful imaging approaches have enabled high resolution and genome-wide analysis of the spatial organization of chromosomes. The aim of this thesis is two-fold; 1), to provide guidelines for analyzing and interpreting data obtained from genome-wide 3C methods such as Hi-C and 3C-seq and 2), to leverage the 3C technology to solve genome function, structure, assembly, development and dosage problems across a broad range of organisms and disease models. First, through the introduction of cWorld, a toolkit for manipulating genome structure data, I accelerate the pace at which *C experiments can be performed, analyzed and biological insights inferred. Next I discuss a set of practical guidelines one should consider while planning an experiment to study the structure of the genome, a simple workflow for data processing unique to *C data and a set of considerations one should be aware of while attempting to gain insights from the data. Next, I apply these guidelines and leverage the cWorld toolkit in the context of two dosage compensation systems. The first is a worm condensin mutant which shows a reduction in dosage compensation in the hermaphrodite X chromosomes. The second is an allele-specific study consisting of genome wide Hi-C, RNA-Seq and ATAC-Seq which can measure the state of the active (Xa) and inactive (Xi) X chromosome. Finally I turn to studying specific gene – enhancer looping interactions across a panel of ENCODE cell-lines. These studies, when taken together, further our understanding of how genome structure relates to genome function.
-
Structural Variation Discovery and Genotyping from Whole Genome Sequencing: Methodology and Applications: A DissertationZhuang, Jiali (2015-09-15)A comprehensive understanding about how genetic variants and mutations contribute to phenotypic variations and alterations entails experimental technologies and analytical methodologies that are able to detect genetic variants/mutations from various biological samples in a timely and accurate manner. High-throughput sequencing technology represents the latest achievement in a series of efforts to facilitate genetic variants discovery and genotyping and promises to transform the way we tackle healthcare and biomedical problems. The tremendous amount of data generated by this new technology, however, needs to be processed and analyzed in an accurate and efficient way in order to fully harness its potential. Structural variation (SV) encompasses a wide range of genetic variations with different sizes and generated by diverse mechanisms. Due to the technical difficulties of reliably detecting SVs, their characterization lags behind that of SNPs and indels. In this dissertation I presented two novel computational methods: one for detecting transposable element (TE) transpositions and the other for detecting SVs in general using a local assembly approach. Both methods are able to pinpoint breakpoint junctions at single-nucleotide resolution and estimate variant allele frequencies in the sample. I also applied those methods to study the impact of TE transpositions on the genomic stability, the inheritance patterns of TE insertions in the population and the molecular mechanisms and potential functional consequences of somatic SVs in cancer genomes.
-
Genome-Wide Identification of Early-Firing Human Replication Origins by Optical Replication Mapping [preprint]Klein, Kyle; Wang, Weitao; Borrman, Tyler M.; Chan, Saki; Zhang, Denghong; Weng, Zhiping; Hastie, Alex; Chen, Chunlong; Gilbert, David M.; Rhind, Nicholas R. (2017-11-06)The timing of DNA replication is largely regulated by the location and timing of replication origin firing. Therefore, much effort has been invested in identifying and analyzing human replication origins. However, the heterogeneous nature of eukaryotic replication kinetics and the low efficiency of individual origins in metazoans has made mapping the location and timing of replication initiation in human cells difficult. We have mapped early-firing origins in HeLa cells using Optical Replication Mapping, a high-throughput single-molecule approach based on Bionano Genomics genomic mapping technology. The single-molecule nature and 290-fold coverage of our dataset allowed us to identify origins that fire with as little as 1% efficiency. We find sites of human replication initiation in early S phase are not confined to well-defined efficient replication origins, but are instead distributed across broad initiation zones consisting of many inefficient origins. These early-firing initiation zones co-localize with initiation zones inferred from Okazaki-fragment-mapping analysis and are enriched in ORC1 binding sites. Although most early-firing origins fire in early-replication regions of the genome, a significant number fire in late-replicating regions, suggesting that the major difference between origins in early and late replicating regions is their probability of firing in early S-phase, as opposed to qualitative differences in their firing-time distributions. This observation is consistent with stochastic models of origin timing regulation, which explain the regulation of replication timing in yeast.