We are upgrading the repository! A content freeze is in effect until December 11, 2024. New submissions or changes to existing items will not be allowed during this period. All content already published will remain publicly available for searching and downloading. Updates will be posted in the Website Upgrade 2024 FAQ in the sidebar Help menu. Reach out to escholarship@umassmed.edu with any questions.
A genome wide RNA interference screening method to identify host factors that modulate influenza A virus replication
Name:
Publisher version
View Source
Access full-text PDFOpen Access
View Source
Check access options
Check access options
UMass Chan Affiliations
Department of Microbiology and Physiological SystemsDocument Type
Journal ArticlePublication Date
2013-02-01Keywords
siRNA screeningAutomated siRNA transfection
Reverse transfection
Functional genomics
Host-virus interactions
Influenza A virus
Whole genome screen
Genetics and Genomics
Genomics
Molecular Biology
Molecular Genetics
Nucleic Acids, Nucleotides, and Nucleosides
Virology
Viruses
Metadata
Show full item recordAbstract
The use of genome wide RNA interference (RNAi) screens to investigate host-virals interactions has revealed unexpected connections that have improved our understanding of viral pathogenesis and cell biology. This work describes the use of an RNAi screening method employing an immunofluorescence image-based strategy and influenza A virus. We find this approach to be readily implemented, scalable and amenable to the direct evaluation of a variety of viral lifecycles.Source
Methods. 2013 Feb;59(2):217-24. doi: 10.1016/j.ymeth.2012.09.009. Link to article on publisher's site
DOI
10.1016/j.ymeth.2012.09.009Permanent Link to this Item
http://hdl.handle.net/20.500.14038/29769PubMed ID
23036328Related Resources
ae974a485f413a2113503eed53cd6c53
10.1016/j.ymeth.2012.09.009
Scopus Count
Collections
Related items
Showing items related by title, author, creator and subject.
-
Computational Approaches for the Analysis of Chromosome Conformation Capture Data and Their Application to Study Long-Range Gene Regulation: A DissertationLajoie, Bryan R. (2016-02-10)Over the last decade, development and application of a set of molecular genomic approaches based on the chromosome conformation capture method (3C), combined with increasingly powerful imaging approaches have enabled high resolution and genome-wide analysis of the spatial organization of chromosomes. The aim of this thesis is two-fold; 1), to provide guidelines for analyzing and interpreting data obtained from genome-wide 3C methods such as Hi-C and 3C-seq and 2), to leverage the 3C technology to solve genome function, structure, assembly, development and dosage problems across a broad range of organisms and disease models. First, through the introduction of cWorld, a toolkit for manipulating genome structure data, I accelerate the pace at which *C experiments can be performed, analyzed and biological insights inferred. Next I discuss a set of practical guidelines one should consider while planning an experiment to study the structure of the genome, a simple workflow for data processing unique to *C data and a set of considerations one should be aware of while attempting to gain insights from the data. Next, I apply these guidelines and leverage the cWorld toolkit in the context of two dosage compensation systems. The first is a worm condensin mutant which shows a reduction in dosage compensation in the hermaphrodite X chromosomes. The second is an allele-specific study consisting of genome wide Hi-C, RNA-Seq and ATAC-Seq which can measure the state of the active (Xa) and inactive (Xi) X chromosome. Finally I turn to studying specific gene – enhancer looping interactions across a panel of ENCODE cell-lines. These studies, when taken together, further our understanding of how genome structure relates to genome function.
-
Structural Variation Discovery and Genotyping from Whole Genome Sequencing: Methodology and Applications: A DissertationZhuang, Jiali (2015-09-15)A comprehensive understanding about how genetic variants and mutations contribute to phenotypic variations and alterations entails experimental technologies and analytical methodologies that are able to detect genetic variants/mutations from various biological samples in a timely and accurate manner. High-throughput sequencing technology represents the latest achievement in a series of efforts to facilitate genetic variants discovery and genotyping and promises to transform the way we tackle healthcare and biomedical problems. The tremendous amount of data generated by this new technology, however, needs to be processed and analyzed in an accurate and efficient way in order to fully harness its potential. Structural variation (SV) encompasses a wide range of genetic variations with different sizes and generated by diverse mechanisms. Due to the technical difficulties of reliably detecting SVs, their characterization lags behind that of SNPs and indels. In this dissertation I presented two novel computational methods: one for detecting transposable element (TE) transpositions and the other for detecting SVs in general using a local assembly approach. Both methods are able to pinpoint breakpoint junctions at single-nucleotide resolution and estimate variant allele frequencies in the sample. I also applied those methods to study the impact of TE transpositions on the genomic stability, the inheritance patterns of TE insertions in the population and the molecular mechanisms and potential functional consequences of somatic SVs in cancer genomes.
-
An integrated encyclopedia of DNA elements in the human genomeDunham, Ian; Birney, Ewan; Lajoie, Bryan R.; Sanyal, Amartya; Dong, Xianjun; Greven, Melissa; Lin, Xinying; Wang, Jie; Whitfield, Troy W.; Zhuang, Jiali; et al. (2012-09-06)The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure and histone modification. These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation. Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an expansive resource of functional annotations for biomedical research.