Show simple item record

dc.contributor.authorSen, Sudeshna
dc.contributor.authorSultana, Nadia
dc.contributor.authorShaffer, Scott A.
dc.contributor.authorThompson, Paul R
dc.date2022-08-11T08:08:28.000
dc.date.accessioned2022-08-23T15:56:16Z
dc.date.available2022-08-23T15:56:16Z
dc.date.issued2021-11-24
dc.date.submitted2022-01-02
dc.identifier.citation<p>Sen S, Sultana N, Shaffer SA, Thompson PR. Proximity-Dependent Labeling of Cysteines. J Am Chem Soc. 2021 Nov 24;143(46):19257-19261. doi: 10.1021/jacs.1c07069. Epub 2021 Nov 11. PMID: 34762412. <a href="https://doi.org/10.1021/jacs.1c07069">Link to article on publisher's site</a></p>
dc.identifier.issn0002-7863 (Linking)
dc.identifier.doi10.1021/jacs.1c07069
dc.identifier.pmid34762412
dc.identifier.urihttp://hdl.handle.net/20.500.14038/29930
dc.description.abstractMapping protein-protein interactions is crucial for understanding various signaling pathways in living cells, and developing new techniques for this purpose has attracted significant interest. Classic methods (e.g., the yeast two-hybrid) have been supplanted by more sophisticated chemical approaches that label proximal proteins (e.g., BioID, APEX). Herein we describe a proximity-based approach that uniquely labels cysteines. Our approach exploits the nicotinamide N-methyltransferase (NNMT)-catalyzed methylation of an alkyne-substituted 4-chloropyridine (SS6). Upon methylation of the pyridinium nitrogen, this latent electrophile diffuses out of the active site and labels proximal proteins on short time scales ( < /=5 min). We validated this approach by identifying known (and novel) interacting partners of protein arginine deiminase 2 (PAD2) and pyruvate dehydrogenase kinase 1 (PDK1). To our knowledge, this technology uniquely exploits a suicide substrate to label proximal cysteines in live cells.
dc.language.isoen_US
dc.relation<p><a href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&list_uids=34762412&dopt=Abstract">Link to Article in PubMed</a></p>
dc.relation.urlhttps://doi.org/10.1021/jacs.1c07069
dc.subjectCalcium
dc.subjectProtein identification
dc.subjectPeptides and proteins
dc.subjectMonomers
dc.subjectLabeling
dc.subjectAmino Acids, Peptides, and Proteins
dc.subjectBiochemistry, Biophysics, and Structural Biology
dc.subjectChemistry
dc.subjectEnzymes and Coenzymes
dc.titleProximity-Dependent Labeling of Cysteines
dc.typeJournal Article
dc.source.journaltitleJournal of the American Chemical Society
dc.source.volume143
dc.source.issue46
dc.identifier.legacycoverpagehttps://escholarship.umassmed.edu/faculty_pubs/2133
dc.identifier.contextkey27074124
html.description.abstract<p>Mapping protein-protein interactions is crucial for understanding various signaling pathways in living cells, and developing new techniques for this purpose has attracted significant interest. Classic methods (e.g., the yeast two-hybrid) have been supplanted by more sophisticated chemical approaches that label proximal proteins (e.g., BioID, APEX). Herein we describe a proximity-based approach that uniquely labels cysteines. Our approach exploits the nicotinamide N-methyltransferase (NNMT)-catalyzed methylation of an alkyne-substituted 4-chloropyridine (SS6). Upon methylation of the pyridinium nitrogen, this latent electrophile diffuses out of the active site and labels proximal proteins on short time scales ( < /=5 min). We validated this approach by identifying known (and novel) interacting partners of protein arginine deiminase 2 (PAD2) and pyruvate dehydrogenase kinase 1 (PDK1). To our knowledge, this technology uniquely exploits a suicide substrate to label proximal cysteines in live cells.</p>
dc.identifier.submissionpathfaculty_pubs/2133
dc.contributor.departmentThompson Lab
dc.contributor.departmentMass Spectrometry Facility
dc.contributor.departmentProgram in Chemical Biology
dc.contributor.departmentDepartment of Biochemistry and Molecular Pharmacology
dc.source.pages19257-19261


This item appears in the following Collection(s)

Show simple item record