Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells
Authors
Kearns, Nicola A.Genga, Ryan M. J.
Enuameh, Metewo Selase
Garber, Manuel
Wolfe, Scot A.
Maehr, Rene
UMass Chan Affiliations
Bioinformatics and Integrative BiologyProgram in Gene Function and Expression
Program in Molecular Medicine
Diabetes Center of Excellence
Document Type
Journal ArticlePublication Date
2014-01-01Keywords
Amino Acid SequenceCaspase 9
Cell Differentiation
Cell Lineage
Clustered Regularly Interspaced Short Palindromic Repeats
DNA-Binding Proteins
Embryonic Stem Cells
Gene Regulatory Networks
HEK293 Cells
Humans
Molecular Sequence Data
Octamer Transcription Factor-3
Pluripotent Stem Cells
SOXF Transcription Factors
Transcription, Genetic
Transcriptional Activation
UMCCTS funding
Cell Biology
Cellular and Molecular Physiology
Developmental Biology
Molecular Genetics
Metadata
Show full item recordAbstract
The identification of the trans-acting factors and cis-regulatory modules that are involved in human pluripotent stem cell (hPSC) maintenance and differentiation is necessary to dissect the operating regulatory networks in these processes and thereby identify nodes where signal input will direct desired cell fate decisions in vitro or in vivo. To deconvolute these networks, we established a method to influence the differentiation state of hPSCs with a CRISPR-associated catalytically inactive dCas9 fused to an effector domain. In human embryonic stem cells, we find that the dCas9 effectors can exert positive or negative regulation on the expression of developmentally relevant genes, which can influence cell differentiation status when impinging on a key node in the regulatory network that governs the cell state. This system provides a platform for the interrogation of the underlying regulators governing specific differentiation decisions, which can then be employed to direct cellular differentiation down desired pathways.Source
Kearns NA, Genga RM, Enuameh MS, Garber M, Wolfe SA, Maehr R. Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells. Development. 2014 Jan;141(1):219-23. doi:10.1242/dev.103341. Link to article on publisher's site
DOI
10.1242/dev.103341Permanent Link to this Item
http://hdl.handle.net/20.500.14038/30102PubMed ID
24346702Related Resources
ae974a485f413a2113503eed53cd6c53
10.1242/dev.103341
Scopus Count
Related items
Showing items related by title, author, creator and subject.
-
Differential regulation of mouse germline Ig gamma 1 and epsilon promoters by IL-4 and CD40Mao, C. S.; Stavnezer, Janet (2001-08-01)Before Ig class switching, RNA transcription through the specific S regions undergoing recombination is induced by cytokines and other activators that induce and direct switching. The resulting germline (GL) transcripts are essential for switch recombination. To understand the differential regulation of mouse IgG1 and IgE, we compared the promoters for GL gamma1 and epsilon transcripts. We addressed the question of why the promoter that regulates GL epsilon transcription is more responsive to IL-4 than the gamma1 promoter and also why GL epsilon transcription is more dependent on IL-4 than is gamma1 transcription. We found that the IL-4-responsive region of the GL epsilon promoter is more inducible than that of the gamma1 promoter, although each promoter contains a binding site for the IL-4-inducible transcription factor Stat6, located immediately adjacent to a binding site for a basic region leucine zipper (bZip) family protein. However, the arrangement and sequences of the sites differ between the epsilon and gamma1 promoters. The GL epsilon promoter binds Stat6 with a 10-fold higher affinity than does the gamma1 promoter. Furthermore, the bZip elements of the two promoters bind different transcription factors, as the GL epsilon promoter binds and is activated by AP-1, whereas the gamma1 promoter binds and is activated by activating transcription factor 2. C/EBPbeta and C/EBPgamma also bind the gamma1 bZip element, although they inhibit rather than activate transcription. However, inhibition of promoter activity by C/EBPbeta does not require the bZip element and may instead occur via inhibiting the activity of NF-kappaB.
-
Genome-wide functional analysis reveals factors needed at the transition steps of induced reprogrammingYang, Chao-Shun; Chang, Kung-Yen; Rana, Tariq M. (2014-07-24)Although transcriptome analysis can uncover the molecular changes that occur during induced reprogramming, the functional requirements for a given factor during stepwise cell-fate transitions are left unclear. Here, we used a genome-wide RNAi screen and performed integrated transcriptome analysis to identify key genes and cellular events required at the transition steps in reprogramming. Genes associated with cell signaling pathways (e.g., Itpr1, Itpr2, and Pdia3) constitute the major regulatory networks before cells acquire pluripotency. Activation of a specific gene set (e.g., Utf1 or Tdgf1) is important for mature induced pluripotent stem cell formation. Strikingly, a major proportion of RNAi targets ( approximately 53% to 70%) includes genes whose expression levels are unchanged during reprogramming. Among these non-differentially expressed genes, Dmbx1, Hnf4g, Nobox, and Asb4 are important, whereas Nfe2, Cdkn2aip, Msx3, Dbx1, Lzts1, Gtf2i, and Ankrd22 are roadblocks to reprogramming. Together, our results provide a wealth of information about gene functions required at transition steps during reprogramming.
-
Citrullination/Methylation Crosstalk on Histone H3 Regulates ER-Target Gene Transcription.Clancy, Kathleen W.; Russell, Anna-Maria; Subramanian, Venkataraman; Nguyen, Hannah; Qian, Yuewei; Campbell, Robert M.; Thompson, Paul R (2017-06-16)Posttranslational modifications of histone tails are a key contributor to epigenetic regulation. Histone H3 Arg26 and Lys27 are both modified by multiple enzymes, and their modifications have profound effects on gene expression. Citrullination of H3R26 by PAD2 and methylation of H3K27 by PRC2 have opposing downstream impacts on gene regulation; H3R26 citrullination activates gene expression, and H3K27 methylation represses gene expression. Both of these modifications are drivers of a variety of cancers, and their writer enzymes, PAD2 and EZH2, are the targets of drug therapies. After biochemical and cell-based analysis of these modifications, a negative crosstalk interaction is observed. Methylation of H3K27 slows citrullination of H3R26 30-fold, whereas citrullination of H3R26 slows methylation 30,000-fold. Examination of the mechanism of this crosstalk interaction uncovered a change in structure of the histone tail upon citrullination which prevents methylation by the PRC2 complex. This mechanism of crosstalk is reiterated in cell lines using knockdowns and inhibitors of both enzymes. Based our data, we propose a model in which, after H3 Cit26 formation, H3K27 demethylases are recruited to the chromatin to activate transcription. In total, our studies support the existence of crosstalk between citrullination of H3R26 and methylation of H3K27.