• Login
    View Item 
    •   Home
    • UMass Chan Faculty and Staff Research and Publications
    • UMass Chan Faculty and Researcher Publications
    • View Item
    •   Home
    • UMass Chan Faculty and Staff Research and Publications
    • UMass Chan Faculty and Researcher Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of eScholarship@UMassChanCommunitiesPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsThis CollectionPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywords

    My Account

    LoginRegister

    Help

    AboutSubmission GuidelinesData Deposit PolicySearchingAccessibilityTerms of UseWebsite Migration FAQ

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Mapping thalamocortical networks in rat brain using resting-state functional connectivity

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Publisher version
    View Source
    Access full-text PDFOpen Access
    View Source
    Check access options
    Check access options
    Authors
    Liang, Zhifeng
    Li, Tao
    King, Jean A.
    Zhang, Nanyin
    UMass Chan Affiliations
    Center for Comparative Neuroimaging, Department of Psychiatry
    Document Type
    Journal Article
    Publication Date
    2013-12-01
    Keywords
    Neurology
    Neuroscience and Neurobiology
    Psychiatry
    Psychiatry and Psychology
    
    Metadata
    Show full item record
    Link to Full Text
    http://dx.doi.org/10.1016/j.neuroimage.2013.06.029
    Abstract
    Thalamocortical connectivity plays a vital role in brain function. The anatomy and function of thalamocortical networks have been extensively studied in animals by numerous invasive techniques. Non-invasively mapping thalamocortical networks in humans has also been demonstrated by utilizing resting-state functional magnetic resonance imaging (rsfMRI). However, success in simultaneously imaging multiple thalamocortical networks in animals is rather limited. This is largely due to the profound impact of anesthesia used in most animal experiments on functional connectivity measurement. Here we have employed an awake animal imaging approach to systematically map thalamocortical connectivity for multiple thalamic nuclei in rats. Seed-based correlational analysis demonstrated robust functional connectivity for each thalamic nucleus in the cortex, and the cortical connectivity profiles revealed were in excellent accordance with the known thalamocortical anatomical connections. In addition, partial correlation analysis was utilized to further improve the spatial specificity of thalamocortical connectivity. Taken together, these findings have provided important evidence supporting the validity of rsfMRI measurement in awake animals. More importantly, the present study has made it possible to non-invasively investigate the function, neuroplasticity and mutual interactions of thalamocortical networks in animal models.
    Source
    Liang Z, Li T, King J, Zhang N. Mapping thalamocortical networks in rat brain using resting-state functional connectivity. Neuroimage. 2013 Dec;83:237-44. doi:10.1016/j.neuroimage.2013.06.029. Link to article on publisher's site
    DOI
    10.1016/j.neuroimage.2013.06.029
    Permanent Link to this Item
    http://hdl.handle.net/20.500.14038/30133
    PubMed ID
    23777756
    Related Resources
    Link to Article in PubMed
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.neuroimage.2013.06.029
    Scopus Count
    Collections
    UMass Chan Faculty and Researcher Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Lamar Soutter Library, UMass Chan Medical School | 55 Lake Avenue North | Worcester, MA 01655 USA
    Quick Guide | escholarship@umassmed.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.