We are upgrading the repository! A content freeze has been extended to December 11, 2024, when we expect the new repository to become available. New submissions or changes to existing items will not be allowed until after the new website goes live. All content already published will remain publicly available for searching and downloading. Updates will be posted in the Website Upgrade 2024 FAQ in the sidebar Help menu. Reach out to escholarship@umassmed.edu with any questions.
Inflammatory cytokine-mediated evasion of virus-induced tumors from NK cell control
UMass Chan Affiliations
Department of PathologyDocument Type
Journal ArticlePublication Date
2013-07-15Keywords
AnimalsAntigens, CD11b
Cell Line, Tumor
Cytotoxicity, Immunologic
Down-Regulation
Interleukin-1alpha
Interleukin-1beta
Interleukins
Killer Cells, Natural
Macrophages
Mice
Mice, Inbred C57BL
Mice, Knockout
Mice, SCID
NK Cell Lectin-Like Receptor Subfamily K
Nuclear Matrix-Associated Proteins
Nucleocytoplasmic Transport Proteins
Polyomavirus
Polyomavirus Infections
Salivary Gland Neoplasms
*Tumor Escape
Tumor Microenvironment
Tumor Necrosis Factors
Tumor Virus Infections
Immunology and Infectious Disease
Immunopathology
Metadata
Show full item recordAbstract
Infections with DNA tumor viruses, including members of the polyomavirus family, often result in tumor formation in immune-deficient hosts. The complex control involved in antiviral and antitumor immune responses during these infections can be studied in murine polyomavirus (PyV)-infected mice as a model. We found that NK cells efficiently kill cells derived from PyV-induced salivary gland tumors in vitro in an NKG2D (effector cell)-RAE-1 (target cell)-dependent manner; but in T cell-deficient mice, NK cells only delay but do not prevent the development of PyV-induced tumors. In this article, we show that the PyV-induced tumors have infiltrating functional NK cells. The freshly removed tumors, however, lack surface RAE-1 expression, and the tumor tissues produce soluble factors that downregulate RAE-1. These factors include the proinflammatory cytokines IL-1alpha, IL-1beta, IL-33, and TNF. Each of these cytokines downregulates RAE-1 expression and susceptibility to NK cell-mediated cytotoxicity. CD11b(+)F4/80(+) macrophages infiltrating the PyV-induced tumors produce high amounts of IL-1beta and TNF. Thus, our data suggest a new mechanism whereby inflammatory cytokines generated in the tumor environment lead to evasion of NK cell-mediated control of virus-induced tumors.Source
Mishra R, Polic B, Welsh RM, Szomolanyi-Tsuda E. Inflammatory cytokine-mediated evasion of virus-induced tumors from NK cell control. J Immunol. 2013 Jul 15;191(2):961-70. doi: 10.4049/jimmunol.1203328. Link to article on publisher's siteDOI
10.4049/jimmunol.1203328Permanent Link to this Item
http://hdl.handle.net/20.500.14038/30147PubMed ID
23772039Related Resources
Link to Article in PubMedae974a485f413a2113503eed53cd6c53
10.4049/jimmunol.1203328
Scopus Count
Collections
Related items
Showing items related by title, author, creator and subject.
-
Critical roles for interleukin 1 and tumor necrosis factor alpha in antibody-induced arthritisJi, Hong; Pettit, Allison; Ohmura, Koichiro; Ortiz-Lopez, Adriana; Duchatelle, Veronique; Degott, Claude; Gravallese, Ellen M.; Mathis, Diane; Benoist, Christophe (2002-11-01)In spontaneous inflammatory arthritis of K/BxN T cell receptor transgenic mice, the effector phase of the disease is provoked by binding of immunoglobulins (Igs) to joint surfaces. Inflammatory cytokines are known to be involved in human inflammatory arthritis, in particular rheumatoid arthritis, although, overall, the pathogenetic mechanisms of the human affliction remain unclear. To explore the analogy between the K/BxN model and human patients, we assessed the role and relative importance of inflammatory cytokines in K/BxN joint inflammation by transferring arthritogenic serum into a panel of genetically deficient recipients. Interleukin (IL)-1 proved absolutely necessary. Tumor necrosis factor (TNF)-alpha was also required, although seemingly less critically than IL-1, because a proportion of TNF-alpha-deficient mice developed robust disease. There was no evidence for an important role for IL-6. Bone destruction and reconstruction were also examined. We found that all mice with strong inflammation exhibited the bone erosion and reconstruction phenomena typical of K/BxN arthritis, with no evidence of any particular requirement for TNFalpha for bone destruction. The variability in the requirement for TNF-alpha, reminiscent of that observed in treated rheumatoid arthritis patients, did not appear genetically programmed but related instead to subtle environmental changes.
-
Elucidating the Molecular Mechanism of CYLD-Mediated Necrosis: A DissertationMoquin, David M. (2013-05-13)TNFα-induced programmed necrosis is a caspase-independent cell death program that is contingent upon the formation of a multiprotein complex termed the necrosome. The association of two of the components of the necrosome, receptor interacting protein 1 (RIP1) and RIP3, is a critical and signature molecular event during necrosis. Within this complex, both RIP1 and RIP3 are phosphorylated which are consequential for transmission of the pro-necrotic signal. Namely, it has been demonstrated that RIP3 phosphorylation is required for binding to downstream substrates. Nevertheless, the regulatory mechanisms governing necrosome activation remain unclear. Since necrosis is implicated in a variety of different diseases, understanding the biochemical signaling pathway can potentially yield future drug targets. I was interested in identifying other regulators of necrosis in hope of gaining a better understanding of the necrosis signaling pathway and regulators of the necrosome. To address this, I screened a cancer gene siRNA library in a cell line sensitive to necrosis. From this, I independently identified CYLD as a positive regulator of necrosis. Previous studies suggest that deubiquitination of RIP1 in the TNF receptor (TNFR)-1 signaling complex is a prerequisite for transition of RIP1 into the cytosol and assembly of the RIP1-RIP3 necrosome. The deubiquitinase cylindromatosis (CYLD) is presumed to promote programmed necrosis by facilitating RIP1 deubiquitination in this membrane receptor complex. Surprisingly, I found that TNFα could induce RIP1-dependent necrosis in CYLD-/- cells. I show that CYLD does not regulate RIP1 ubiquitination at the receptor complex. Strikingly, assembly of the RIP1-RIP3 necrosome was delayed, but not abolished in the absence of CYLD. In addition to the TNFR-1 complex, I found that RIP1 within the necrosome was also ubiquitinated. In the absence of CYLD, RIP1 ubiquitination in the NP-40 insoluble necrosome was greatly increased. Increased RIP1 ubiquitination correlated with impaired RIP1 and RIP3 phosphorylation, a signature of kinase activation. My results show that CYLD regulates RIP1 ubiquitination in the NP-40 insoluble necrosome, but not in the TNFR-1 signaling complex. Contrary to the current model, CYLD is not essential for necrosome assembly. Rather, it facilitates RIP1 and RIP3 activation within the necrosome and the corollary is enhancement of necrosome functionality and subsequent necrosis. My results therefore indicate that CYLD exerts its pro-necrotic function in the NP-40 insoluble necrosome, and illuminates the mechanism of necrosome activation.
-
MicroRNA-34c inversely couples the biological functions of the runt-related transcription factor RUNX2 and the tumor suppressor p53 in osteosarcomaVan der Deen, Margaretha; Taipaleenmaki, Hanna; Zhang, Ying; Teplyuk, Nadiya M.; Gupta, Anurag; Cinghu, Senthilkumar; Shogren, Kristen; Maran, Avudaiappan; Yaszemski, Michael J.; Ling, Ling; et al. (2013-07-19)Osteosarcoma (OS) is a primary bone tumor that is most prevalent during adolescence. RUNX2, which stimulates differentiation and suppresses proliferation of osteoblasts, is deregulated in OS. Here, we define pathological roles of RUNX2 in the etiology of OS and mechanisms by which RUNX2 expression is stimulated. RUNX2 is often highly expressed in human OS biopsies and cell lines. Small interference RNA-mediated depletion of RUNX2 inhibits growth of U2OS OS cells. RUNX2 levels are inversely linked to loss of p53 (which predisposes to OS) in distinct OS cell lines and osteoblasts. RUNX2 protein levels decrease upon stabilization of p53 with the MDM2 inhibitor Nutlin-3. Elevated RUNX2 protein expression is post-transcriptionally regulated and directly linked to diminished expression of several validated RUNX2 targeting microRNAs in human OS cells compared with mesenchymal progenitor cells. The p53-dependent miR-34c is the most significantly down-regulated RUNX2 targeting microRNAs in OS. Exogenous supplementation of miR-34c markedly decreases RUNX2 protein levels, whereas 3'-UTR reporter assays establish RUNX2 as a direct target of miR-34c in OS cells. Importantly, Nutlin-3-mediated stabilization of p53 increases expression of miR-34c and decreases RUNX2. Thus, a novel p53-miR-34c-RUNX2 network controls cell growth of osseous cells and is compromised in OS.