Comparative Effectiveness of Statin Therapy in Chronic Kidney Disease and Acute Myocardial Infarction: A Retrospective Cohort Study
Name:
Publisher version
View Source
Access full-text PDFOpen Access
View Source
Check access options
Check access options
Authors
Smith, David H.Johnson, Eric S.
Boudreau, Denise M.
Cassidy-Bushrow, Andrea E.
Fortmann, Stephen P.
Greenlee, Robert T.
Gurwitz, Jerry H.
Magid, David
McNeal, Catherine J.
Reynolds, Kristi
Steinhubl, Steven R.
Thorp, Micah
Tom, Jeffrey O.
Vupputuri, Suma
VanWormer, Jeffrey J.
Weinstein, Jessica
Yang, Xiuhai
Go, Alan S.
Sidney, Stephen
UMass Chan Affiliations
Department of Medicine, Division of Geriatric MedicineMeyers Primary Care Institute
Document Type
Journal ArticlePublication Date
2015-11-01Keywords
AdultAged
Aged, 80 and over
Comparative Effectiveness Research
Female
Humans
Hydroxymethylglutaryl-CoA Reductase Inhibitors
Kaplan-Meier Estimate
Male
Middle Aged
Myocardial Infarction
Propensity Score
Proportional Hazards Models
Renal Insufficiency, Chronic
Retrospective Studies
Treatment Outcome
Chronic kidney disease
Comparative effectiveness
Statins
eGFR
Cardiovascular Diseases
Female Urogenital Diseases and Pregnancy Complications
Geriatrics
Hepatology
Male Urogenital Diseases
Metadata
Show full item recordAbstract
BACKGROUND: Whether there is a kidney function threshold to statin effectiveness in patients with acute myocardial infarction is poorly understood. Our study sought to help fill this gap in clinical knowledge. METHODS: We undertook a new-user cohort study of the effectiveness of statin therapy by level of estimated glomerular filtration rate (eGFR) in adults who were hospitalized for myocardial infarction between 2000 and 2008. Data came from the Cardiovascular Research Network. The primary clinical outcomes were 1-year all-cause mortality and cardiovascular hospitalizations, with adverse outcomes of myopathy and development of diabetes mellitus. We calculated incidence rates, the number needed to treat, and used Cox proportional hazards regression with propensity score matching and adjustment to control for confounding, with testing for variation of effect by level of kidney function. RESULTS: Compared with statin non-initiators (n = 5583), statin initiators (n = 5597) had a lower propensity score-adjusted risk for death (hazard ratio 0.79; 95% confidence interval [CI], 0.71-0.88) and cardiovascular hospitalizations (hazard ratio 0.90; 95% CI, 0.82-1.00). We found little evidence of variation in effect by level of eGFR (P = .86 for death; P = .77 for cardiovascular hospitalization). Adverse outcomes were similar for statin initiators and statin non-initiators. The number needed to treat to prevent 1 additional death over 1 year of follow-up ranged from 15 (95% CI, 11-28) for eGFR < 30 mL/min/1.73 m(2) requiring statin treatment over 2 years to prevent 1 additional death, to 67 (95% CI, 49-118) for patients with eGFR > 90 mL/min/1.73 m(2). CONCLUSIONS: Our findings suggest that there is potential for important public health gains by increasing the routine use of statin therapy for patients with lower levels of kidney function.Source
Am J Med. 2015 Nov;128(11):1252.e1-1252.e11. doi: 10.1016/j.amjmed.2015.06.030. Epub 2015 Jul 11. Link to article on publisher's siteDOI
10.1016/j.amjmed.2015.06.030Permanent Link to this Item
http://hdl.handle.net/20.500.14038/30597PubMed ID
26169887Related Resources
Link to Article in PubMedae974a485f413a2113503eed53cd6c53
10.1016/j.amjmed.2015.06.030
Scopus Count
Collections
Related items
Showing items related by title, author, creator and subject.
-
Role of WFS1 in Regulating Endoplasmic Reticulum Stress Signaling: A DissertationFonseca, Sonya G. (2009-02-24)The endoplasmic reticulum (ER) is a multi-functional cellular compartment that functions in protein folding, lipid biosynthesis, and calcium homeostasis. Perturbations to ER function lead to the dysregulation of ER homeostasis, causing the accumulation of unfolded and misfolded proteins in the cell. This is a state of ER stress. ER stress elicits a cytoprotective, adaptive signaling cascade to mitigate stress, the Unfolded Protein Response (UPR). As long as the UPR can moderate stress, cells can produce the proper amount of proteins and maintain a state of homeostasis. If the UPR, however, is dysfunctional and fails to achieve this, cells will undergo apoptosis. Diabetes mellitus is a group of metabolic disorders characterized by persistent high blood glucose levels. The pathogenesis of this disease involves pancreatic β-cell dysfunction: an abnormality in the primary function of the β-cell, insulin production and secretion. Activation of the UPR is critical to pancreatic β-cell survival, where a disruption in ER stress signaling can lead to cell death and consequently diabetes. There are several models of ER stress leading to diabetes. Wolcott-Rallison syndrome, for example, occurs when there is a mutation in the gene encoding one of the master regulators of the UPR, PKR-like ER kinase (PERK). In this dissertation, we show that Wolfram Syndrome 1 (WFS1), an ER transmembrane protein, is a component of the UPR and is a downstream target of two of the master regulators of the UPR, Inositol Requiring 1 (IRE1) and PERK. WFS1 mutations lead to Wolfram syndrome, a non-autoimmune form of type 1 diabetes accompanied by optical atrophy and other neurological disorders. It has been shown that patients develop diabetes due to the selective loss of their pancreatic β-cells. Here we define the underlying molecular mechanism of β-cell loss in Wolfram syndrome, and link this cell loss to ER stress and a dysfunction in a component of the UPR, WFS1. We show that WFS1 expression is localized to the β-cell of the pancreas, it is upregulated during insulin secretion and ER stress, and its inactivation leads to chronic ER stress and apoptosis. This dissertation also reveals the previously unknown function of WFS1 in the UPR. Positive regulation of the UPR has been extensively studied, however, the precise mechanisms of negative regulation of this signaling pathway have not. Here we report that WFS1 regulates a key transcription factor of the UPR, activating transcription factor 6 (ATF6), through the ubiquitin-proteasome pathway. WFS1 expression decreases expression levels of ATF6 target genes and represses ATF6-mediated activation of the ER stress response (ERSE) promoter. WFS1 recruits and stabilizes an E3 ubiquitin ligase, HMG-CoA reductase degradation protein 1 (HRD1), on the ER membrane. The WFS1-HRD1 complex recruits ATF6 to the proteasome and enhances its ubiquitination and proteasome-mediated degradation, leading to suppression of the UPR under non-stress conditions. In response to ER stress, ATF6 is released from WFS1 and activates the UPR to mitigate ER stress. This body of work reveals a novel role for WFS1 in the UPR, and a novel mechanism for regulating ER stress signaling. These findings also indicate that hyperactivation of the UPR can lead to cellular dysfunction and death. This supports the notion that tight regulation of ER stress signaling is crucial to cell survival. This unanticipated role of WFS1 for a feedback loop of the UPR is relevant to diseases caused by chronic hyperactivation of ER stress signaling network such as pancreatic β-cell death in diabetes and neurodegeneration.
-
Progress and prospects: gene therapy clinical trials (part 1)Alexander, B. L.; Ali, R. R.; Alton, E.W.F.; Bainbridge, J. W.; Braun, S.; Cheng, S. H.; Flotte, Terence R.; Gaspar, H. B.; Grez, M.; Griesenbach, U.; et al. (2007-10-03)Over the last two decades gene therapy has moved from preclinical to clinical studies for many diseases ranging from single gene disorders such as cystic fibrosis and Duchenne muscular dystrophy, to more complex diseases such as cancer and cardiovascular disorders. Gene therapy for severe combined immunodeficiency (SCID) is the most significant success story to date, but progress in many other areas has been significant. We asked 20 leaders in the field succinctly to summarize and comment on clinical gene therapy research in their respective areas of expertise and these are published in two parts in the Progress and Prospect series.
-
Gaucher disease in the COVID-19 pandemic environment: The good, the bad and the unknownGinns, Edward I.; Ryan, Emory; Sidransky, Ellen (2021-04-01)Early in the course of the novel coronavirus disease 2019 (COVID-19) pandemic, the rare disease community anticipated that patients with lysosomal and other metabolic disorders would be at increased risk for poor disease outcomes and mortality from the SARS-CoV-2 virus.