We are upgrading the repository! A content freeze is in effect until December 6, 2024. New submissions or changes to existing items will not be allowed during this period. All content already published will remain publicly available for searching and downloading. Updates will be posted in the Website Upgrade 2024 FAQ in the sidebar Help menu. Reach out to escholarship@umassmed.edu with any questions.
Chronic alcohol-induced microRNA-155 contributes to neuroinflammation in a TLR4-dependent manner in mice
UMass Chan Affiliations
Department of Medicine, Division of Infectious Diseases and ImmunologyDepartment of Medicine, Division of Gastroenterology
Document Type
Journal ArticlePublication Date
2013-08-09Keywords
AlcoholismAnimals
Cerebellum
Chemokine CCL2
Chronic Disease
Ethanol
Female
Gene Expression Regulation
Inflammation
Interleukin-1beta
Mice
Mice, Knockout
MicroRNAs
Microglia
Primary Cell Culture
Signal Transduction
Toll-Like Receptor 4
Tumor Necrosis Factor-alpha
Digestive System Diseases
Gastroenterology
Genetics
Hepatology
Immunopathology
Metadata
Show full item recordAbstract
INTRODUCTION: Alcohol-induced neuroinflammation is mediated by pro-inflammatory cytokines and chemokines including tumor necrosis factor-alpha (TNFalpha), monocyte chemotactic protein-1 (MCP1) and interleukin-1-beta (IL-1beta). Toll-like receptor-4 (TLR4) pathway induced nuclear factor-kappaB (NF-kappaB) activation is involved in the pathogenesis of alcohol-induced neuroinflammation. Inflammation is a highly regulated process. Recent studies suggest that microRNAs (miRNAs) play crucial role in fine tuning gene expression and miR-155 is a major regulator of inflammation in immune cells after TLR stimulation. AIM: To evaluate the role of miR-155 in the pathogenesis of alcohol-induced neuroinflammation. METHODS: Wild type (WT), miR-155- and TLR4-knockout (KO) mice received 5% ethanol-containing or isocaloric control diet for 5 weeks. Microglia markers were measured by q-RTPCR; inflammasome activation was measured by enzyme activity; TNFalpha, MCP1, IL-1beta mRNA and protein were measured by q-RTPCR and ELISA; phospho-p65 protein and NF-kappaB were measured by Western-blotting and EMSA; miRNAs were measured by q-PCR in the cerebellum. MiR-155 was measured in immortalized and primary mouse microglia after lipopolysaccharide and ethanol stimulation. RESULTS: Chronic ethanol feeding up-regulated miR-155 and miR-132 expression in mouse cerebellum. Deficiency in miR-155 protected mice from alcohol-induced increase in inflammatory cytokines; TNFalpha, MCP1 protein and TNFalpha, MCP1, pro-IL-1beta and pro-caspase-1 mRNA levels were reduced in miR-155 KO alcohol-fed mice. NF-kappaB was activated in WT but not in miR-155 KO alcohol-fed mice. However increases in cerebellar caspase-1 activity and IL-1beta levels were similar in alcohol-fed miR-155-KO and WT mice. Alcohol-fed TLR4-KO mice were protected from the induction of miR-155. NF-kappaB activation measured by phosphorylation of p65 and neuroinflammation were reduced in alcohol-fed TLR4-KO compared to control mice. TLR4 stimulation with lipopolysaccharide in primary or immortalized mouse microglia resulted in increased miR-155. CONCLUSION: Chronic alcohol induces miR-155 in the cerebellum in a TLR4-dependent manner. Alcohol-induced miR-155 regulates TNFalpha and MCP1 expression but not caspase-dependent IL-1beta increase in neuroinflammation.Source
PLoS One. 2013 Aug 9;8(8):e70945. doi: 10.1371/journal.pone.0070945 Link to article on publisher's siteDOI
10.1371/journal.pone.0070945Permanent Link to this Item
http://hdl.handle.net/20.500.14038/31087PubMed ID
23951048Related Resources
Link to Article in PubMedRights
Copyright 2013 Lippai et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
ae974a485f413a2113503eed53cd6c53
10.1371/journal.pone.0070945