The Role of MKK3 in Mediating Signals to the p38 MAP Kinase Pathway: A Dissertation
Authors
Wysk, Mark AllenFaculty Advisor
Roger J. Davis, Ph.D.Academic Program
Biochemistry and Molecular PharmacologyUMass Chan Affiliations
Program in Molecular MedicineDocument Type
Doctoral DissertationPublication Date
2000-11-08Keywords
MAP Kinase Signaling SystemMitogen-Activated Protein Kinase Kinases
Mitogen-Activated Protein Kinases
Signal Transduction
Amino Acids, Peptides, and Proteins
Cells
Chemical Actions and Uses
Enzymes and Coenzymes
Metadata
Show full item recordAbstract
p38 mitogen-activated protein (MAP) kinases represent a subgroup of MAP kinases that respond to environmental stress and inflammatory cytokines. p38 MAPK is activated by two upstream kinases, MKK3 and MKK6, by dual phosphorylation on threonine and tyrosine in conserved kinase subdomain VII. Until recently the relative roles of MKK3 and MKK6 have remained unclear. I have undertaken two strategies in an effort to understand the importance of MKK3 as a p38 MAPK activator. First, I cloned and characterized the murine mkk3 gene and determined the structure of the 5'-terminus. Comparison of the murine and human mkk3 genes revealed that the mouse gene encodes a single MKK3 isoform, MKK3b, and the human gene encodes two isoforms, MKK3a and MKK3b. Comparison of the mouse and human mkk3 genes suggests that expression of MKK3a and MKK3b is regulated from different promotors. Analysis of the mkk3 promoter demonstrates that muscle specific expression of murine MKK3b is controlled, in part, by the transcription factors MEF2 and MyoD. Second, I have utilized a gene targeting strategy to disrupt the murine mkk3 gene and to examine the effect on p38 MAPK signaling. I found that there is a p38-specific signaling defect in MKK3 deficient primary mouse embryo fibroblasts (MEF) which correlates with deficits in interleukin (IL)-1 and IL-6 production in response to tumor necrosis factor-α (TNFα) stimulation. In addition there is a defect in TNFα mediated expression of TNFα and macrophage inflammatory proteins (MIP) 1α, MIP1β and MIP2. p38 MAPK-specific signaling defects were also observed in lipopolysaccharide (LPS) stimulated mkk3 (-/-) macrophages. Additionally, mkk3 (-/-) macrophages exhibit defects in LPS and CD40-ligand (CD40L) stimulated IL-12 biosynthesis. Similar data were obtained from CD40L-stimulated mkk3 (-/-) dendritic cells. I also observe that interferon (Ifn)-γ production is diminished during T-helper-1 (TH1) differentiation of CD4+ T-cells derived from mkk3 (-/-) mice. Taken together these data demonstrate a crucial role for p38 MAPK activation by MKK3 in response to the inflammatory cytokine, TNFα and during a TH1 inflammatory response.DOI
10.13028/mk2q-1b09Permanent Link to this Item
http://hdl.handle.net/20.500.14038/31485Notes
Some images did not scan well. Please consult original document.
Rights
Copyright is held by the author, with all rights reserved.ae974a485f413a2113503eed53cd6c53
10.13028/mk2q-1b09
Scopus Count
Collections
Related items
Showing items related by title, author, creator and subject.
-
The MKK7 gene encodes a group of c-Jun NH2-terminal kinase kinasesTournier, Cathy; Whitmarsh, Alan J.; Cavanagh, Julie; Barrett, Tamera; Davis, Roger J. (1999-01-16)The c-Jun NH2-terminal protein kinase (JNK) is a member of the mitogen-activated protein kinase (MAPK) group and is an essential component of a signaling cascade that is activated by exposure of cells to environmental stress. JNK activation is regulated by phosphorylation on both Thr and Tyr residues by a dual-specificity MAPK kinase (MAPKK). Two MAPKKs, MKK4 and MKK7, have been identified as JNK activators. Genetic studies demonstrate that MKK4 and MKK7 serve nonredundant functions as activators of JNK in vivo. We report here the molecular cloning of the gene that encodes MKK7 and demonstrate that six isoforms are created by alternative splicing to generate a group of protein kinases with three different NH2 termini (alpha, beta, and gamma isoforms) and two different COOH termini (1 and 2 isoforms). The MKK7alpha isoforms lack an NH2-terminal extension that is present in the other MKK7 isoforms. This NH2-terminal extension binds directly to the MKK7 substrate JNK. Comparison of the activities of the MKK7 isoforms demonstrates that the MKK7alpha isoforms exhibit lower activity, but a higher level of inducible fold activation, than the corresponding MKK7beta and MKK7gamma isoforms. Immunofluorescence analysis demonstrates that these MKK7 isoforms are detected in both cytoplasmic and nuclear compartments of cultured cells. The presence of MKK7 in the nucleus was not, however, required for JNK activation in vivo. These data establish that the MKK4 and MKK7 genes encode a group of protein kinases with different biochemical properties that mediate activation of JNK in response to extracellular stimuli.
-
Role of the JIP4 scaffold protein in the regulation of mitogen-activated protein kinase signaling pathwaysKelkar, Nyaya; Standen, Claire L.; Davis, Roger J. (2005-03-16)The c-Jun NH2-terminal kinase (JNK)-interacting protein (JIP) group of scaffold proteins (JIP1, JIP2, and JIP3) can interact with components of the JNK signaling pathway and potently activate JNK. Here we describe the identification of a fourth member of the JIP family. The primary sequence of JIP4 is most closely related to that of JIP3. Like other members of the JIP family of scaffold proteins, JIP4 binds JNK and also the light chain of the microtubule motor protein kinesin-1. However, the function of JIP4 appears to be markedly different from other JIP proteins. Specifically, JIP4 does not activate JNK signaling. In contrast, JIP4 serves as an activator of the p38 mitogen-activated protein (MAP) kinase pathway by a mechanism that requires the MAP kinase kinases MKK3 and MKK6. The JIP4 scaffold protein therefore appears to be a new component of the p38 MAP kinase signaling pathway.
-
A mammalian scaffold complex that selectively mediates MAP kinase activationWhitmarsh, Alan J.; Cavanagh, Julie; Tournier, Cathy; Yasuda, Jun; Davis, Roger J. (1998-09-11)The c-Jun NH2-terminal kinase (JNK) group of mitogen-activated protein (MAP) kinases is activated by the exposure of cells to multiple forms of stress. A putative scaffold protein was identified that interacts with multiple components of the JNK signaling pathway, including the mixed-lineage group of MAP kinase kinase kinases (MLK), the MAP kinase kinase MKK7, and the MAP kinase JNK. This scaffold protein selectively enhanced JNK activation by the MLK signaling pathway. These data establish that a mammalian scaffold protein can mediate activation of a MAP kinase signaling pathway.