Show simple item record

dc.contributor.advisorJoonsoo Kang, Ph.D.
dc.contributor.authorBrown, David Spaulding
dc.date2022-08-11T08:08:40.000
dc.date.accessioned2022-08-23T16:03:44Z
dc.date.available2022-08-23T16:03:44Z
dc.date.issued2005-09-20
dc.date.submitted2007-01-02
dc.identifier.doi10.13028/eqwy-6j58
dc.identifier.urihttp://hdl.handle.net/20.500.14038/31537
dc.description.abstractImmunologic self-tolerance is maintained by both central and peripheral mechanisms. Furthermore, regulation of mature lymphocyte responses is governed by inhibitory as well as stimulatory signals. TCR recognition of cognate peptide bound to MHC molecules provides the initial stimulus leading to T lymphocyte activation and determines the antigen specificity of any subsequent response. However, lymphocytes must discriminate between foreign and self antigens presented by self-MHC molecules to maintain self tolerance and avoid pathological autoimmunity. Consequently, TCR ligation alone is reported to result in abortive activation, T cell anergy, apoptosis, and tolerance. Under normal physiological conditions, costimulatory signals modify lymphocyte responsiveness to TCR ligation to prevent autoimmunity while enabling robust responses to foreign antigen. Members of the CD28/B7 superfamily provide the critical secondary signals essential for normal immune cell function. CD28 is an essential positive costimulatory molecule with critical functions in thymic development, lineage commitment, and regulation of peripheral lymphocyte responses to antigenic stimuli. CD28 ligation by APC-expressed B7 molecules alters proximal signaling events subsequent to MHC/TCR interactions, and initiates unique signaling pathways that alter mRNA stability and gene transcription. Furthermore, CD28 signaling is required for regulatory T cell development and function. Thus, CD28 has a central role in both potentiating lymphocyte activation mediated by TCR engagement and regulating peripheral tolerance. In contrast, Ctla-4 mediates an inhibitory signal upon binding B7 molecules on an antigen-presenting cell. Its importance in governing lymphocyte responses is manifested in the fatal lymphoproliferative disorder seen in Ctla-4-/- mice. The lymphocyte proliferation is polyclonal, antigen and CD28 dependent, and arises from defects in peripheral CD4+T cell regulation. The high percentage of peripheral T lymphocytes expressing activation markers is accompanied by lymphocyte infiltration into numerous non-lymphoid tissues and results in death by 3-4 weeks. While still controversial, Ctla-4 signaling has been reported to be essential for induction of peripheral T lymphocyte tolerance in vivo and in some model systems is proposed to regulate both T lymphocyte anergy induction and the immune suppressive effects of some regulatory T cells in the prevention of autoimmunity. Signaling pathways activated by TCR ligation and CD28 costimulation have been extensively characterized. In contrast, the mechanisms mediating Ctla-4 maintenance of tolerance remain largely unknown. Ctla-4 gene expression is tightly controlled during T cell development and activation, and its intracellular localization and expression on the cell surface is regulated by numerous pathways and intermediates. While a tailless Ctla-4 mutant is capable of inhibiting T cell activation, recent studies have shown that a ligand independent form of Ctla-4 is also capable of providing an inhibitory signal to T lymphocytes. In conjunction with the strictly controlled expression kinetics and the perfect amino acid homology between the intracellular domains of mouse and human Ctla-4, this data suggests that Ctla-4 may participate in the modulation or initiation of intracellular signaling pathways. Positive and negative costimulatory receptors on the T cell modify lymphocyte responses by altering both quantitative and qualitative aspects of the lymphocyte response including threshold of activation, cytokine secretion, and memory responses. Positive costimulation augments T cell responses, in part, by downregulating the expression of genes that actively maintain the quiescent phenotype. This study was initiated to determine the role of Ctla-4 ligation in modifying the global gene expression profile of stimulated T cells and to determine if the Ctla-4 mediated maintenance of T cell tolerance was achieved, in part, by altering the transcription of quiescence genes necessary for the prevention of T cell activation subsequent to TCR and CD28 stimulation. Previous studies investigating the influence of Ctla-4 ligation on transcriptional profiles of activated lymphocytes detected only quantitative alterations in the transcriptional regulation initiated by CD28 signaling. In contrast, our data suggests that quantitative effects of Ctla-4 ligation that differentially influence pathways acting downstream of stimulatory receptors results in a stable and qualitatively unique phenotype detectable at the level of the transcriptome. Thus, the cumulative effect of Ctla-4 signaling is unique and not constrained to reversing alterations in expression initiated by CD28. In addition, Ctla-4 ligation can be shown to influence T lymphocyte responsiveness and the resulting global expression profile within 4 hours after stimulation and prior to detectable Ctla-4 surface expression. In a subpopulation of T cells, TCR stimulation activates pathways that result in commitment to activation with 2-6 hours. In contrast, CD28 signaling must be maintained for 12-16 hours to ensure maximal responses at the population level. The period of sensitivity to Ctla-4 inhibition of activation is more constrained and does not extend beyond 12 hours. Together, these data support a potential role for Ctla-4 in modification of the early transcriptional response and may explain various alterations in phenotype resulting from Ctla-4 ligation that have been reported in secondary responses. Identification of genes involved in lymphocyte activation, maintenance of selftolerance, and attenuation of immune responses opens the door to therapeutic manipulation of the pathways implicated. CD28 costimulation results in general amplification of TCR-initiated transcriptional responses, and specifically alters the expression profile of a subset of genes. In contrast, Ctla-4 ligation directly and specifically alters the expression of a select group of genes when ligated, and results in minimal suppression of the global CD28-mediated costimulatory transcriptional response. Ctla-4 regulated genes comprise a heterogeneous family, but include known quiescence factors, transcriptional regulators, and various determinants of cell cycle progression and senescence. The role of Ctla-4 in maintaining self-tolerance indicates that targeted manipulation of these gene products presents a novel therapeutic opportunity, and suggests that the mechanisms involved in Ctla-4-mediated maintenance of peripheral T cell tolerance and regulation of immune responsiveness is more nuanced than previously thought. In addition, this study provides the most comprehensive description of global gene expression during primary lymphocyte activation yet available. The integration of statistical and bioinfomatics analyses with large scale data mining tools identifies genes not previously characterized in lymphocytes and can direct future work by predicting potentially interacting gene products and pathways.
dc.language.isoen_US
dc.rightsCopyright is held by the author, with all rights reserved.
dc.subjectCD4-Positive T-Lymphocytes
dc.subjectGenes
dc.subjectT-Cell Receptor
dc.subjectAntigens
dc.subjectCD28
dc.subjectAntigens
dc.subjectDifferentiation
dc.subjectGene Expression
dc.subjectSignal Transduction
dc.subjectSelf Tolerance
dc.subjectGenes
dc.subjectMHC Class II
dc.subjectBiological Factors
dc.subjectCells
dc.subjectGenetic Phenomena
dc.subjectHemic and Immune Systems
dc.titleCD4+ T Cell Responses: A Complex Network of Activating and Tolerizing Signals as Revealed by Gene Expression Analysis: A Dissertation
dc.typeDoctoral Dissertation
dc.identifier.legacyfulltexthttps://escholarship.umassmed.edu/cgi/viewcontent.cgi?article=1230&context=gsbs_diss&unstamped=1
dc.identifier.legacycoverpagehttps://escholarship.umassmed.edu/gsbs_diss/230
dc.legacy.embargo2007-10-16T00:00:00-07:00
dc.identifier.contextkey236780
refterms.dateFOA2022-08-24T03:43:48Z
html.description.abstract<p>Immunologic self-tolerance is maintained by both central and peripheral mechanisms. Furthermore, regulation of mature lymphocyte responses is governed by inhibitory as well as stimulatory signals. TCR recognition of cognate peptide bound to MHC molecules provides the initial stimulus leading to T lymphocyte activation and determines the antigen specificity of any subsequent response. However, lymphocytes must discriminate between foreign and self antigens presented by self-MHC molecules to maintain self tolerance and avoid pathological autoimmunity. Consequently, TCR ligation alone is reported to result in abortive activation, T cell anergy, apoptosis, and tolerance. Under normal physiological conditions, costimulatory signals modify lymphocyte responsiveness to TCR ligation to prevent autoimmunity while enabling robust responses to foreign antigen. Members of the CD28/B7 superfamily provide the critical secondary signals essential for normal immune cell function.</p> <p>CD28 is an essential positive costimulatory molecule with critical functions in thymic development, lineage commitment, and regulation of peripheral lymphocyte responses to antigenic stimuli. CD28 ligation by APC-expressed B7 molecules alters proximal signaling events subsequent to MHC/TCR interactions, and initiates unique signaling pathways that alter mRNA stability and gene transcription. Furthermore, CD28 signaling is required for regulatory T cell development and function. Thus, CD28 has a central role in both potentiating lymphocyte activation mediated by TCR engagement and regulating peripheral tolerance. In contrast, Ctla-4 mediates an inhibitory signal upon binding B7 molecules on an antigen-presenting cell. Its importance in governing lymphocyte responses is manifested in the fatal lymphoproliferative disorder seen in Ctla-4<sup>-/-</sup> mice. The lymphocyte proliferation is polyclonal, antigen and CD28 dependent, and arises from defects in peripheral CD4<sup>+</sup>T cell regulation. The high percentage of peripheral T lymphocytes expressing activation markers is accompanied by lymphocyte infiltration into numerous non-lymphoid tissues and results in death by 3-4 weeks. While still controversial, Ctla-4 signaling has been reported to be essential for induction of peripheral T lymphocyte tolerance in vivo and in some model systems is proposed to regulate both T lymphocyte anergy induction and the immune suppressive effects of some regulatory T cells in the prevention of autoimmunity.</p> <p>Signaling pathways activated by TCR ligation and CD28 costimulation have been extensively characterized. In contrast, the mechanisms mediating Ctla-4 maintenance of tolerance remain largely unknown. Ctla-4 gene expression is tightly controlled during T cell development and activation, and its intracellular localization and expression on the cell surface is regulated by numerous pathways and intermediates. While a tailless Ctla-4 mutant is capable of inhibiting T cell activation, recent studies have shown that a ligand independent form of Ctla-4 is also capable of providing an inhibitory signal to T lymphocytes. In conjunction with the strictly controlled expression kinetics and the perfect amino acid homology between the intracellular domains of mouse and human Ctla-4, this data suggests that Ctla-4 may participate in the modulation or initiation of intracellular signaling pathways.</p> <p>Positive and negative costimulatory receptors on the T cell modify lymphocyte responses by altering both quantitative and qualitative aspects of the lymphocyte response including threshold of activation, cytokine secretion, and memory responses. Positive costimulation augments T cell responses, in part, by downregulating the expression of genes that actively maintain the quiescent phenotype. This study was initiated to determine the role of Ctla-4 ligation in modifying the global gene expression profile of stimulated T cells and to determine if the Ctla-4 mediated maintenance of T cell tolerance was achieved, in part, by altering the transcription of quiescence genes necessary for the prevention of T cell activation subsequent to TCR and CD28 stimulation.</p> <p>Previous studies investigating the influence of Ctla-4 ligation on transcriptional profiles of activated lymphocytes detected only quantitative alterations in the transcriptional regulation initiated by CD28 signaling. In contrast, our data suggests that quantitative effects of Ctla-4 ligation that differentially influence pathways acting downstream of stimulatory receptors results in a stable and qualitatively unique phenotype detectable at the level of the transcriptome. Thus, the cumulative effect of Ctla-4 signaling is unique and not constrained to reversing alterations in expression initiated by CD28. In addition, Ctla-4 ligation can be shown to influence T lymphocyte responsiveness and the resulting global expression profile within 4 hours after stimulation and prior to detectable Ctla-4 surface expression. In a subpopulation of T cells, TCR stimulation activates pathways that result in commitment to activation with 2-6 hours. In contrast, CD28 signaling must be maintained for 12-16 hours to ensure maximal responses at the population level. The period of sensitivity to Ctla-4 inhibition of activation is more constrained and does not extend beyond 12 hours. Together, these data support a potential role for Ctla-4 in modification of the early transcriptional response and may explain various alterations in phenotype resulting from Ctla-4 ligation that have been reported in secondary responses.</p> <p>Identification of genes involved in lymphocyte activation, maintenance of selftolerance, and attenuation of immune responses opens the door to therapeutic manipulation of the pathways implicated. CD28 costimulation results in general amplification of TCR-initiated transcriptional responses, and specifically alters the expression profile of a subset of genes. In contrast, Ctla-4 ligation directly and specifically alters the expression of a select group of genes when ligated, and results in minimal suppression of the global CD28-mediated costimulatory transcriptional response. Ctla-4 regulated genes comprise a heterogeneous family, but include known quiescence factors, transcriptional regulators, and various determinants of cell cycle progression and senescence. The role of Ctla-4 in maintaining self-tolerance indicates that targeted manipulation of these gene products presents a novel therapeutic opportunity, and suggests that the mechanisms involved in Ctla-4-mediated maintenance of peripheral T cell tolerance and regulation of immune responsiveness is more nuanced than previously thought. In addition, this study provides the most comprehensive description of global gene expression during primary lymphocyte activation yet available. The integration of statistical and bioinfomatics analyses with large scale data mining tools identifies genes not previously characterized in lymphocytes and can direct future work by predicting potentially interacting gene products and pathways.</p>
dc.identifier.submissionpathgsbs_diss/230
dc.contributor.departmentDepartment of Pathology
dc.description.thesisprogramMD/PhD


Files in this item

Thumbnail
Name:
Brown_David.pdf
Size:
6.520Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record