• Login
    View Item 
    •   Home
    • UMass Chan Student Research and Publications
    • Morningside Graduate School of Biomedical Sciences
    • Morningside Graduate School of Biomedical Sciences Dissertations and Theses
    • View Item
    •   Home
    • UMass Chan Student Research and Publications
    • Morningside Graduate School of Biomedical Sciences
    • Morningside Graduate School of Biomedical Sciences Dissertations and Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of eScholarship@UMassChanCommunitiesPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsThis CollectionPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywords

    My Account

    LoginRegister

    Help

    AboutSubmission GuidelinesData Deposit PolicySearchingAccessibilityTerms of UseWebsite Migration FAQ

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Tolerance Induction to a Foreign Protein Antigen: Analysing the Role of B Cells in Establishing Peripheral Tolerance

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Authors
    Yuschenkoff, Victoria Nicole
    UMass Chan Affiliations
    Graduate School of Biomedical Sciences, Immunology
    Document Type
    Doctoral Dissertation
    Publication Date
    1995-09-14
    Keywords
    Antigen-Presenting Cells
    B-Lymphocytes
    T-Lymphocytes
    Immunity, Cellular
    Academic Dissertations
    Dissertations, UMMS
    Life Sciences
    Medicine and Health Sciences
    
    Metadata
    Show full item record
    Abstract
    Tolerance to self proteins is largely dependent upon the deletion of immature, self-specific T and B cells in the thymus and bone marrow. Although highly efficient, the elimination of these self-reactive lymphocytes is dependent on the expression of their target antigen in these primary lymphoid organs. Many proteins, however, such as hormones, are developmentally regulated and expressed at different stages of life, while other proteins are expressed outside the thymus and marrow. To ensure self-tolerance, other mechanisms must exist to inactivate or prevent the activation of mature, potentially self-reactive lymphocytes and maintain peripheral tolerance. T cell activation requires direct recognition of a specific protein fragment, presented on the surface of an antigen presenting cell (APC), as well as the interaction between various T cell and APC surface molecules. In the absence of the costimulatory signals provided by these ligand-pair interactions and lymphokines, antigen recognition leads to T cell inactivation and tolerance to the protein. Since many autoimmune disorders appear to be based upon the aberrant activation of mature T lymphocytes, it is important to identify and understand the mechanisms of peripheral tolerance. The obvious importance of the APC in initiating the T cell immune response has led our lab to examine one of the many antigen-processing cells, the B lymphocyte. Our studies have shown that B cells are highly efficient APC and can present antigen at very low doses to cultured T cell lines. In addition, we have found that we can induce tolerance, as measured by a reduced antibody response to an immunogenic form of the protein, in naive, normal mice by targeting a foreign protein to their B cells for antigen processing and presentation. Tolerance in the treated mice can be traced to a lesion in the T cell compartment of the animals, thus suggesting that B cells can act as tolerizing APC for peripherally expressed antigens. To further explore this idea and find more direct evidence for the role of B cells in establishing peripheral tolerance, we developed a model system that would more closely resemble in vivo conditions. This thesis tests and provides additional evidence for the hypothesis that B cells are tolerizing antigen presenting cells for peripherally expressed protein antigens. Tolerance to the foreign protein human μ chain, is induced in normal recipient mice by the transfusion of splenocytes from transgenic mice that express the membrane-bound form of μ on their B cells. Tolerance is antigen-specific since the transfused recipients' antibody production to the irrelevant protein chicken IgG is not compromised. Only viable transgenic spleen cells are tolerogenic and even when human μ chain is accessible to other APCs for presentation, tolerance can be induced by the transfusion of live μ transgenic splenoctyes. These data suggested that the transfused μ chain-expressing B cells are the tolerizing APCs which was confirmed by experiments that compared the tolerizing abilities of purified B and T cells from the transgenic mice. Adoptive transfer experiments showed that the recipients' T cell response to human μ was impaired but an analysis of the isotypes produced by tolerized mice did not indicate that either helper T cell subset was specifically compromised. Splenocytes from human μ chain-secreting transgenic B cells also induce tolerance to human μ in nontransgenic mice. Although human μ chain-expressing B cells were not detected in transfused mice, the presence of measurable levels of human IgM in the sera of mice transfused with μ chain-secreting spleen cells suggests that the transfused transgenic B cells persist in their new host. In addition, the tolerizing ability of both resting and activated membrane-bound μ chain B cells was compared. Lipopolysaccharide (LPS)-activated transgenic spleen cells do not tolerize, nor do they prime for antibody to human μ, thus suggesting that the induction of costimulatory molecules on the transgenic B cells inhibits tolerance induction. To more specifically address this, human μ chain-expressing mice were bred to transgenic mice that express the costimulatory molecule, B7-1 (CD80), on their B cells. Double transgenic splenocytes, in which the B cells bear both human μ and B7-1, did not induce tolerance to human μ chain, a result that supports the idea that activated B cells are not tolerogenic. Together the data in this thesis show that resting B cells can process and present a foreign endogenous antigen in a tolerogenic manner to the immune system and suggest a role for the B cell in the maintenance of peripheral tolerance.
    Permanent Link to this Item
    http://hdl.handle.net/20.500.14038/31611
    Notes
    In the process of seeking author's permission to provide full text.
    Rights
    Copyright is held by the author, with all rights reserved.
    Collections
    Morningside Graduate School of Biomedical Sciences Dissertations and Theses

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Lamar Soutter Library, UMass Chan Medical School | 55 Lake Avenue North | Worcester, MA 01655 USA
    Quick Guide | escholarship@umassmed.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.