• Login
    View Item 
    •   Home
    • UMass Chan Student Research and Publications
    • Morningside Graduate School of Biomedical Sciences
    • Morningside GSBS Dissertations and Theses
    • View Item
    •   Home
    • UMass Chan Student Research and Publications
    • Morningside Graduate School of Biomedical Sciences
    • Morningside GSBS Dissertations and Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of eScholarship@UMassChanCommunitiesPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsThis CollectionPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsProfilesView

    My Account

    LoginRegister

    Help

    AboutSubmission GuidelinesData Deposit PolicySearchingUsage StatisticsAccessibilityTerms of UseWebsite Migration FAQ

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Cloning and Cell Cycle Analysis of NuMA, a Phosphoprotein That Oscillates Between the Nucleus and the Mitotic Spindle

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Sparks_Cynthia.pdf
    Size:
    5.413Mb
    Format:
    PDF
    Download
    Authors
    Sparks, Cynthia A.
    Faculty Advisor
    Edward G. Fey; Jeanne B. Lawrence
    Academic Program
    Cell Biology
    UMass Chan Affiliations
    Cell Biology
    Document Type
    Doctoral Dissertation
    Publication Date
    1995-09-01
    Keywords
    Nuclear Matrix-Associated Proteins
    Phosphoproteins
    Nuclear Matrix
    Mitotic Spindle Apparatus
    Amino Acids, Peptides, and Proteins
    Cell Biology
    Cells
    Genetic Phenomena
    Nucleic Acids, Nucleotides, and Nucleosides
    
    Metadata
    Show full item record
    Abstract
    The overall objective of this study was to identify novel proteins of the nuclear matrix in order to contribute to a better understanding of nuclear structure and organization. To accomplish this, a monoclonal antibody specific for the nuclear matrix was used to screen a human λgt11 expression library. Several cDNAs were isolated, cloned, sequenced, and shown to represent NuMA, the nuclear mitotic spindle apparatus protein. Further characterization of the gene and RNA was undertaken in an effort to obtain information about NuMA. The NuMA gene was present at a single site on human chromosome 11q13. Northern and PCR analysis of NuMA mRNA showed a major 7.2 kb transcript and minor forms of 8.0 and 3.0 kb. The minor forms were shown to be alternatively spliced although their functional significance is not yet understood. Immunofluorescence microscopy demonstrated that NuMA oscillates between the nucleus and the microtubule spindle apparatus during the mitotic cell cycle. NuMA appeared as a 200-275 kDa protein detectable in all mammalian cells except human neutrophils. To determine whether NuMA's changes in intracellular distribution correlated with post-translational modifications, the protein's phosphorylation state was examined through the cell cycle using highly synchronized cells. NuMA was a phosphoprotein in interphase and underwent additional phosphorylation events in mitosis. The mitotic phosphorylation events occurred with similar timing to lamin B (G2/M transition) and were concomitant with NuMA's release from the nucleus and its association with the mitotic spindle. However, the mitotic phosphorylation occurred in the absence of spindle formation. Dephosphorylation of NuMA did not correlate with reassociation with the nuclear matrix but occurred in two distinct steps after nuclear reformation. Based on the timing of these events, phosphorylation may playa role in nuclear processes. In conclusion, the work in this dissertation identified NuMA, a nuclear matrix protein and showed that it is phosphorylated during the cell cycle and may be important for nuclear events such as nuclear organization, transcription, or initiation of DNA replication at G1/S.
    DOI
    10.13028/a5ym-tg75
    Permanent Link to this Item
    http://hdl.handle.net/20.500.14038/31668
    Rights
    Copyright is held by the author, with all rights reserved.
    ae974a485f413a2113503eed53cd6c53
    10.13028/a5ym-tg75
    Scopus Count
    Collections
    Morningside GSBS Dissertations and Theses

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Lamar Soutter Library, UMass Chan Medical School | 55 Lake Avenue North | Worcester, MA 01655 USA
    Quick Guide | escholarship@umassmed.edu
    Works found in eScholarship@UMassChan are protected by copyright unless otherwise indicated.
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.