• Login
    View Item 
    •   Home
    • UMass Chan Student Research and Publications
    • Morningside Graduate School of Biomedical Sciences
    • Morningside Graduate School of Biomedical Sciences Dissertations and Theses
    • View Item
    •   Home
    • UMass Chan Student Research and Publications
    • Morningside Graduate School of Biomedical Sciences
    • Morningside Graduate School of Biomedical Sciences Dissertations and Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of eScholarship@UMassChanCommunitiesPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsThis CollectionPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywords

    My Account

    LoginRegister

    Help

    AboutSubmission GuidelinesData Deposit PolicySearchingAccessibilityTerms of UseWebsite Migration FAQ

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Toll-Like Receptors: Target of Hepatitis C Virus: A Dissertation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Chang_Serena_reduced.pdf
    Size:
    1.628Mb
    Format:
    PDF
    Download
    Authors
    Chang, Serena Soyoung Yunmee
    Faculty Advisor
    Gyongyi Szabo
    Academic Program
    Immunology and Microbiology
    UMass Chan Affiliations
    Medicine
    Document Type
    Doctoral Dissertation
    Publication Date
    2008-08-08
    Keywords
    Hepacivirus
    Toll-Like Receptor 1
    Toll-Like Receptor 2
    Toll-Like Receptor 6
    Toll-Like Receptor 7
    Hepatitis C
    Digestive System
    Digestive System Diseases
    Hemic and Immune Systems
    Surgical Procedures, Operative
    Therapeutics
    Virus Diseases
    Viruses
    Show allShow less
    
    Metadata
    Show full item record
    Abstract
    Hepatitis C Virus (HCV) is the primary cause of liver transplantation due to its chronic nature in up to eighty percent of infected cases. Around 3 percent of the world’s population is infected with HCV. Treatment for HCV is a combined Ribavirin and interferon-α (IFN-α) therapy effective in only fifty to eighty percent of patients depending on HCV genotype. The growing health concern with this disease is the lack of a cure despite liver transplantation. HCV targets hepatocytes, liver cells, but is not cytolytic. HCV has been shown to induce end stage liver disease through sustained inflammation from the host’s immune system in the liver. One of the key dilemmas in HCV research and the search for fully effective treatments or vaccines is the lack of animal models. HCV infectivity and disease is limited to primates, most specifically to humans, which cannot be fully replicated in any other living being. The mechanisms for HCV evasion or activation of the immune system are complex, many and discoveries within this field are crucial to overcoming this destructive hepatic infection. Toll-like receptors (TLR) are cellular activators of the innate immune system that have been a target of HCV. Activated TLRs trigger both the inflammatory and anti-viral pathways to produce inflammatory cytokines and interferons. HCV proteins have been reported to activate a number of TLRs in a variety of cell types. In order to identify possible targets of HCV within the TLR family, we first characterized TLR presence and function in both human hepatic carcinoma cell lines and purified primary human hepatocytes. RNA from TLRs 1-10 was observed to varying degrees in both the hepatoma cell lines and the primary hepatocytes. We show the extracellular and/or intracellular presence of TLR2, TLR1, TLR3 and TLR7 proteins in hepatoma cell lines. TLR3 and TLR7 are located within the endosome and recognize viral RNA products. We recently reported that TLR2-mediated innate immune signaling pathways are activated by HCV core and NS3 proteins. TLR2 activation requires homo- or heterodimerization with either TLR1 or TLR6. We show NF-κB activation in hepatoma cells by TLR2/1, TLR2/6 ligand and HCV protein stimulation. In primary hepatocytes, HCV proteins induced both IL-8 and IL-6 production. We also show that primary hepatocytes initiate a Type 1 IFN response in addition to IL-8 and IL-6 production upon stimulation with a TLR7/8 ligand. Human hepatoma and primary hepatocytes are responsive to TLR2, TLR1, TLR6, TLR7/8 ligands and HCV proteins. Activation of these TLRs may contribute to the inflammatory mediated destruction caused by HCV or could be targets of HCV contributing to its immune evasion. We found previously that hepatoma cells and primary hepatocytes are responsive to TLR2 ligands and HCV proteins. We also reported that TLR2 is activated by HCV proteins. Here we aimed to determine whether TLR2 coreceptors participated in cellular activation by HCV core or NS3 proteins. By designing siRNAs targeted to TLR2, TLR1 and TLR6, we showed that knockdown of each of these receptors impairs pro- and anti-inflammatory cytokine activation by TLR-specific ligands as well as by HCV core and NS3 proteins in Human Embryonic Kidney cells (HEK/TLR2) and in primary human macrophages. We found that HCV core and NS3 proteins induced TNF-α and IL-10 production in human monocyte-derived macrophages, which was impaired by TLR2, TLR1 and TLR6 knockdown. Contrary to human data, results from TLR2, TLR1 or TLR6 knockout mice indicated that the absence of TLR2 and its coreceptor TLR6, but not TLR1, prevented the HCV core and NS3 protein-induced peritoneal macrophage activation. TLR2 may utilize both TLR1 and TLR6 coreceptors for HCV core- and NS3-mediated activation of macrophages and innate immunity in humans. These results imply that multiple pattern recognition receptors could participate in cellular activation by HCV proteins contributing to inflammatory disease. Two critical factors in chronic HCV infection are inflammatory disease and immune evasion. We have demonstrated that TLR2 and its co-receptors play a role in inflammatory-mediated induction via HCV NS3 and core administration. It has recently been shown that HCV targets the TLR3 pathway to aid in immune evasion. TLR3 is only one of four viral recognition receptors located within the endosome and it is plausible that HCV may target others. We hypothesized that HCV infection may interfere with the expression and function of TLR7, a sensor of single stranded RNA. Investigating any effect on TLR7 by HCV may reveal a new mechanism for HCV immune evasion. Low levels of both TLR7 mRNA and protein were measured in HCV replicating cells compared to control cells while reducing HCV infection with either IFNα or restrictive culture conditions restored the decreased TLR7 expression. Downstream of the TLR7 pathway, an increased baseline IRF7 nuclear translocation was observed in HCV replicating cells compared to controls. Stimulation with a TLR7 ligand, R837, resulted in significant IRF7 nuclear translocation in control cells. In contrast, HCV replicating cells showed impaired IRF7 activation. Use of RNA polymerase inhibitors on hepatoma cells, control and HCV replicating, revealed a shorter TLR7 half life in HCV replicating cells compared to control cells which was not seen in TLR5 mRNA. These data suggest that reduced TLR7 expression, due to RNA instability, directly correlates with HCV replication and results in impaired TLR7-induced IRF7-mediated cell activation. In conclusion, Hepatitis C Virus manipulates specific Toll-like receptors’ expression and their signaling pathways to induce cytokine production. HCV utilizes surface receptors TLR2 and its co-receptors which once activated could contribute to inflammatory disease by production of inflammatory cytokines and possibly immune evasion. HCV down-regulates TLR7, a viral recognition receptor, by decreasing mRNA stability which could facilitate evasion of host immune surveillance.
    DOI
    10.13028/8v6p-cr46
    Permanent Link to this Item
    http://hdl.handle.net/20.500.14038/31708
    Rights
    Copyright is held by the author, with all rights reserved.
    ae974a485f413a2113503eed53cd6c53
    10.13028/8v6p-cr46
    Scopus Count
    Collections
    Morningside Graduate School of Biomedical Sciences Dissertations and Theses

    entitlement

     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      The interferon regulatory factor, IRF5, is a central mediator of toll-like receptor 7 signaling

      Schoenemeyer, Annett; Barnes, Betsy J.; Mancl, Margo E.; Latz, Eicke; Goutagny, Nadege; Pitha, Paula M.; Fitzgerald, Katherine A.; Golenbock, Douglas T. (2005-02-08)
      Interferon regulatory factors (IRFs) are critical components of virus-induced immune activation and type I interferon regulation. IRF3 and IRF7 are activated in response to a variety of viruses or after engagement of Toll-like receptor (TLR) 3 and TLR4 by double-stranded RNA and lipopolysaccharide, respectively. The activation of IRF5, is much more restricted. Here we show that in contrast to IRF3 and IRF7, IRF5 is not a target of the TLR3 signaling pathway but is activated by TLR7 or TLR8 signaling. We also demonstrate that MyD88, interleukin 1 receptor-associated kinase 1, and tumor necrosis factor receptor-associated factor 6 are required for the activation of IRF5 and IRF7 in the TLR7 signaling pathway. Moreover, ectopic expression of IRF5 enabled type I interferon production in response to TLR7 signaling, whereas knockdown of IRF5 by small interfering RNA reduced type I interferon induction in response to the TLR7 ligand, R-848. IRF5 and IRF7, therefore, emerge from these studies as critical mediators of TLR7 signaling.
    • Thumbnail

      Novel engagement of CD14 and multiple toll-like receptors by group B streptococci

      Henneke, Phillip; Takeuchi, Osamu; van Strijp, Jos A.; Guttormsen, Hilde-Kari; Smith, Jason A.; Schromm, Andra B.; Espevik, Terje; Akira, Shizuo; Nizet, Victor; Kasper, Dennis L.; et al. (2001-12-12)
      Group B streptococcus (GBS) imposes a major health threat to newborn infants. Little is known about the molecular basis of GBS-induced sepsis. Both heat-inactivated whole GBS bacteria and a heat-labile soluble factor released by GBS during growth (GBS-F) induce nuclear translocation of NF-kappaB, the secretion of TNF-alpha, and the formation of NO in mouse macrophages. Macrophages from mice with a targeted disruption of MyD88 failed to secrete TNF-alpha in response to both heat-inactivated whole bacteria and GBS-F, suggesting that Toll-like receptors (TLRs) are involved in different aspects of GBS recognition. Immune cell activation by whole bacteria differed profoundly from that by secreted GBS-F. Whole GBS activated macrophages independently of TLR2 and TLR6, whereas a response to the secreted GBS-F was not observed in macrophages from TLR2-deficient animals. In addition to TLR2, TLR6 and CD14 expression were essential for GBS-F responses, whereas TLR1 and TLR4 or MD-2 did not appear to be involved. Heat lability distinguished GBS-F from peptidoglycan and lipoproteins. GBS mutants deficient in capsular polysaccharide or beta-hemolysin had GBS-F activity comparable to that of wild-type streptococci. We suggest that CD14 and TLR2 and TLR6 function as coreceptors for secreted microbial products derived from GBS and that cell wall components of GBS are recognized by TLRs distinct from TLR1, 2, 4, or 6.
    • Thumbnail

      Saturated fatty acid activates but polyunsaturated fatty acid inhibits Toll-like receptor 2 dimerized with Toll-like receptor 6 or 1

      Lee, Joo Y.; Zhao, Ling; Youn, Hyung S.; Weatherill, Amy R.; Tapping, Richard; Feng, Lili; Lee, Won H.; Fitzgerald, Katherine A.; Hwang, Daniel H. (2004-02-18)
      Toll-like receptor 4 (TLR4) and TLR2 agonists from bacterial origin require acylated saturated fatty acids in their molecules. Previously, we reported that TLR4 activation is reciprocally modulated by saturated and polyunsaturated fatty acids in macrophages. However, it is not known whether fatty acids can modulate the activation of TLR2 or other TLRs for which respective ligands do not require acylated fatty acids. A saturated fatty acid, lauric acid, induced NFkappaB activation when TLR2 was co-transfected with TLR1 or TLR6 in 293T cells, but not when TLR1, 2, 3, 5, 6, or 9 was transfected individually. An n-3 polyunsaturated fatty acid (docosahexaenoic acid (DHA)) suppressed NFkappaB activation and cyclooxygenase-2 expression induced by the agonist for TLR2, 3, 4, 5, or 9 in a macrophage cell line (RAW264.7). Because dimerization is considered one of the potential mechanisms for the activation of TLR2 and TLR4, we determined whether the fatty acids modulate the dimerization. However, neither lauric acid nor DHA affected the heterodimerization of TLR2 with TLR6 as well as the homodimerization of TLR4 as determined by co-immunoprecipitation assays in 293T cells in which these TLRs were transiently overexpressed. Together, these results demonstrate that lauric acid activates TLR2 dimers as well as TLR4 for which respective bacterial agonists require acylated fatty acids, whereas DHA inhibits the activation of all TLRs tested. Thus, responsiveness of different cell types and tissues to saturated fatty acids would depend on the expression of TLR4 or TLR2 with either TLR1 or TLR6. These results also suggest that inflammatory responses induced by the activation of TLRs can be differentially modulated by types of dietary fatty acids.
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Lamar Soutter Library, UMass Chan Medical School | 55 Lake Avenue North | Worcester, MA 01655 USA
    Quick Guide | escholarship@umassmed.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.