• Login
    View Item 
    •   Home
    • UMass Chan Student Research and Publications
    • Morningside Graduate School of Biomedical Sciences
    • Morningside GSBS Dissertations and Theses
    • View Item
    •   Home
    • UMass Chan Student Research and Publications
    • Morningside Graduate School of Biomedical Sciences
    • Morningside GSBS Dissertations and Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of eScholarship@UMassChanCommunitiesPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsThis CollectionPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsProfilesView

    My Account

    LoginRegister

    Help

    AboutSubmission GuidelinesData Deposit PolicySearchingUsage StatisticsAccessibilityTerms of UseWebsite Migration FAQ

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Identification of the Function of the Vpx Protein of Primate Lentiviruses: A Dissertation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Zhu_Xiaonan_Reduced.pdf
    Size:
    3.455Mb
    Format:
    PDF
    Download
    Authors
    Zhu, Xiaonan
    Faculty Advisor
    Mario Stevenson, Ph.D.
    Academic Program
    Immunology and Microbiology
    UMass Chan Affiliations
    Molecular Medicine
    Document Type
    Doctoral Dissertation
    Publication Date
    2009-12-14
    Keywords
    Viral Regulatory and Accessory Proteins
    vpr Gene Products
    Human Immunodeficiency Virus
    Simian immunodeficiency virus
    Lentiviruses
    Primate
    Amino Acids, Peptides, and Proteins
    Cells
    Genetic Phenomena
    Viruses
    
    Metadata
    Show full item record
    Abstract
    Primate lentiviruses encode four “accessory proteins” including Vif, Vpu, Nef, and Vpr/ Vpx. Vif and Vpu counteract the antiviral effects of cellular restrictions to early and late steps in the viral replication cycle. The functions of Vpx/ Vpr are not well understood. This study presents evidence that the Vpx proteins of HIV-2/ SIVSMpromote HIV-1 infection by antagonizing an antiviral restriction in myeloid cells. Fusion of macrophages in which Vpx was essential for virus infection, with COS cells in which Vpx was dispensable for virus infection, generated heterokaryons that supported infection by wild-type SIV but not Vpx-deleted SIV. The restriction potently antagonized infection of macrophages by HIV-1, and expression of Vpx in macrophages in transovercame the restriction to HIV-1 and SIV infection. Similarly, the cellular restriction is the obstacle to transduction of macrophages by MLV. Neutralization of the restriction by Vpx rendered macrophages permissive to MLV infection. Vpx was ubiquitylated and both ubiquitylation and the proteasome regulated the activity of Vpx. The ability of Vpx to counteract the restriction to HIV-1 and SIV infection was dependent upon the HIV-1 Vpr interacting protein, damaged DNA binding protein 1 (DDB1), and DDB1 partially substituted for Vpx when fused to Vpr. This study further demonstrates that this restriction prevents transduction of quiescent monocytes by HIV-1. Although terminally differentiated macrophages are partially permissive to HIV-1, quiescent monocytes, which are macrophage precursors, are highly refractory to lentiviral infection. Monocyte-HeLa heterokaryons were resistant to HIV-1 infection, while heterokaryons formed between monocytes and HeLa cells expressing Vpx were permissive to HIV-1 infection, suggesting the resistance of quiescent monocytes to HIV-1 transduction is governed by a restriction factor. Encapsidation of Vpx within HIV-1 virions conferred the ability to infect quiescent monocytes. Introduction of Vpx into monocytes by pre-infection also rendered quiescent monocytes permissive to HIV-1 infection. Infection of monocytes by HIV-1 either with or without Vpx did not have an effect on temporal expression of CD71. In addition, Vpx increased permissivity of CD71– and CD71+cells to HIV-1 infection with no apparent bias. These results confirm that Vpx directly renders undifferentiated monocytes permissive to HIV-1 transduction without inducing their differentiation. The introduction of Vpx did not significantly alter APOBEC3G complex distribution, suggesting a restriction other than APOBEC3G was responsible for the resistance of monocytes to HIV-1. Collectively our results indicate that macrophages and monocytes harbor a potent antiviral restriction that is counteracted by the Vpx protein. The relative ability of primate lentiviruses and gammaretroviruses to transduce non-dividing myeloid-cells is dependent upon their ability to neutralize this restriction.
    DOI
    10.13028/cgm8-q756
    Permanent Link to this Item
    http://hdl.handle.net/20.500.14038/31776
    Rights
    Copyright is held by the author, with all rights reserved.
    ae974a485f413a2113503eed53cd6c53
    10.13028/cgm8-q756
    Scopus Count
    Collections
    Morningside GSBS Dissertations and Theses

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Lamar Soutter Library, UMass Chan Medical School | 55 Lake Avenue North | Worcester, MA 01655 USA
    Quick Guide | escholarship@umassmed.edu
    Works found in eScholarship@UMassChan are protected by copyright unless otherwise indicated.
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.