Defining the Roles of p300/CBP (CREB Binding Protein) and S5a in p53 Polyubiquitination, Degradation and DNA Damage Responses: A Dissertation
Authors
Shi, DingdingFaculty Advisor
Dr. Steven R. GrossmanAcademic Program
Cancer BiologyDocument Type
Doctoral DissertationPublication Date
2010-01-08Keywords
Genesp53
Tumor Suppressor Protein p53
p300-CBP Transcription Factors
CREB-Binding Protein
E1A-Associated p300 Protein
Proteasome Endopeptidase Complex
DNA Damage
Ubiquitination
Amino Acids, Peptides, and Proteins
Cancer Biology
Genetic Phenomena
Neoplasms
Pharmaceutical Preparations
Therapeutics
Metadata
Show full item recordAbstract
p53, known as the “guardian of the genome”, is the most well-characterized tumor suppressor gene. The central role of p53 is to prevent genome instability. p53 is the central node in an incredibly elaborate genome defense network for receiving various input stress signals and controlling diverse cellular responses. The final output of this network is determined not only by the p53 protein itself, but also by other p53 cooperating proteins. p300 and CBP (CREB-Binding Protein) act as multifunctional regulators of p53 via acetylase and ubiquitin ligase activities. Prior work in vitro has shown that the N-terminal 595 aa of p300 encode both generic ubiquitin ligase (E3) and p53-directed E4 functions. Analysis of p300 or CBP-deficient cells revealed that both coactivators were required for endogenous p53 polyubiquitination and the normally rapid turnover of p53 in unstressed cells. Unexpectedly, p300/CBP ubiquitin ligase activities were absent in nuclear extracts and exclusively cytoplasmic. In the nucleus, CBP and p300 exhibited differential regulation of p53 gene target expression, C-terminal acetylation, and biologic response after DNA damage. p300 activated, and CBP repressed, PUMA expression, correlating with activating acetylation of p53 C-terminal lysines by p300, and a repressive acetylation of p53 lysine-320 induced by CBP. Consistent with their gene expression effects, CBP deficiency augmented, and p300 deficiency blocked, apoptosis after doxorubicin treatment. Subcellular compartmentalization of p300/CBP’s ubiquitination and transcription activities reconciles seemingly opposed functions—cytoplasmic p300/CBP E4 activities ubiquitinate and destabilize p53, while nuclear p300/CBP direct p53 acetylation, target gene activation, and biological outcome after genotoxic stress. p53 is a prominent tumor suppressor gene and it is mutated in more than 50% of human tumors. Reactivation of endogenous p53 is one therapeutic avenue to stop cancer cell growth. In this thesis, we have identified S5as a critical regulator of p53 degradation and activity. S5a is a non-ATPase subunit in the 19S regulatory particle of the 26S proteasome. Our preliminary data indicates that S5a is required for p53 instability and is a negative regulator of p53 tranactivation. As a negative regulator of p53, S5a may therefore also represent a new target for cancer drug development against tumors that specifically maintain wild type p53.DOI
10.13028/hfsb-j486Permanent Link to this Item
http://hdl.handle.net/20.500.14038/31782Rights
Copyright is held by the author, with all rights reserved.ae974a485f413a2113503eed53cd6c53
10.13028/hfsb-j486
Scopus Count
Collections
Related items
Showing items related by title, author, creator and subject.
-
Selective interaction of JNK protein kinase isoforms with transcription factorsGupta, Shashi; Barrett, Tamera; Whitmarsh, Alan J.; Cavanagh, Julie; Sluss, Hayla Karen; Derijard, Benoit; Davis, Roger J. (1996-06-03)The JNK protein kinase is a member of the MAP kinase group that is activated in response to dual phosphorylation on threonine and tyrosine. Ten JNK isoforms were identified in human brain by molecular cloning. These protein kinases correspond to alternatively spliced isoforms derived from the JNK1, JNK2 and JNK3 genes. The protein kinase activity of these JNK isoforms was measured using the transcription factors ATF2, Elk-1 and members of the Jun family as substrates. Treatment of cells with interleukin-1 (IL-1) caused activation of the JNK isoforms. This activation was blocked by expression of the MAP kinase phosphatase MKP-1. Comparison of the binding activity of the JNK isoforms demonstrated that the JNK proteins differ in their interaction with ATF2, Elk-1 and Jun transcription factors. Individual members of the JNK group may therefore selectively target specific transcription factors in vivo.
-
Role of the Raf/mitogen-activated protein kinase pathway in p21ras desensitizationKlarlund, Jes K.; Cherniack, Andrew D.; McMahon, Martin; Czech, Michael P. (1996-07-12)Desensitization of p21(ras) after stimulation of cells by growth factors and phorbol 12-myristate 13-acetate (PMA) correlates with hyperphosphorylation of the guanine nucleotide exchange factor Son-of-sevenless (Sos) and its dissociation from the adaptor protein Grb2 (Cherniack, A., Klarlund, J. K., Conway, B. R., and Czech, M. P. (1995) J. Biol. Chem. 270, 1485-1488). To test the role of the Raf/mitogen-activated protein (MAP) kinase pathway, we utilized cells expressing a chimera composed of the catalytic domain of p74Raf-1 and the hormone binding domain of the estradiol receptor (DeltaRaf-1:ER). Estradiol markedly stimulated DeltaRaf-1:ER and the downstream MEK and MAP kinases in these cells as well as Sos phosphorylation. However, the dissociation of Grb2 from Sos observed in response to PMA was not apparent upon DeltaRaf-1:ER activation. Furthermore, stimulation of DeltaRaf-1:ER did not impair GTP loading of p21(ras) in response to platelet-derived growth factor or epidermal growth factor. We conclude that activation of the Raf/MAP kinase pathway alone in these cells is insufficient to cause disassembly of Sos from Grb2 or to interrupt the ability of Sos to catalyze activation of p21(ras).
-
Dynamic Regulation at the Neuronal Plasma Membrane: Novel Endocytic Mechanisms Control Anesthetic-Activated Potassium Channels and Amphetamine-Sensitive Dopamine Transporters: A DissertationGabriel, Luke R. (2013-06-13)Endocytic trafficking dynamically regulates neuronal plasma membrane protein presentation and activity, and plays a central role in excitability and plasticity. Over the course of my dissertation research I investigated endocytic mechanisms regulating two neuronal membrane proteins: the anesthetic-activated potassium leak channel, KCNK3, as well as the psychostimulant-sensitive dopamine transporter (DAT). My results indicate that KCNK3 internalizes in response to Protein Kinase C (PKC) activation, using a novel pathway that requires the phosphoserine binding protein, 14-3-3β, and demonstrates for the first time regulated KCNK3 channel trafficking in neurons. Additionally, PKC-mediated KCNK3 trafficking requires a non-canonical endocytic motif, which is shared exclusively between KCNK3 and sodium-dependent neurotransmitter transporters, such as DAT. DAT trafficking studies in intact ex vivo adult striatal slices indicate that DAT endocytic trafficking has both dynamin-dependent and –independent components. Moreover, DAT segregates into two populations at the neuronal plasma membrane: trafficking-competent and -incompetent. Taken together, these results demonstrate that novel, non-classical endocytic mechanisms dynamically control the plasma membrane presentation of these two important neuronal proteins.