• Login
    View Item 
    •   Home
    • UMass Chan Student Research and Publications
    • Morningside Graduate School of Biomedical Sciences
    • Morningside Graduate School of Biomedical Sciences Dissertations and Theses
    • View Item
    •   Home
    • UMass Chan Student Research and Publications
    • Morningside Graduate School of Biomedical Sciences
    • Morningside Graduate School of Biomedical Sciences Dissertations and Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of eScholarship@UMassChanCommunitiesPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsThis CollectionPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywords

    My Account

    LoginRegister

    Help

    AboutSubmission GuidelinesData Deposit PolicySearchingAccessibilityTerms of UseWebsite Migration FAQ

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Mechanistic Analysis of Chromatin Remodeling Enzymes: a Dissertation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Jaskelioff_Mariela.pdf
    Size:
    10.51Mb
    Format:
    PDF
    Download
    Authors
    Jaskelioff, Mariela
    Faculty Advisor
    Craig L. Peterson, Ph.D.
    Academic Program
    Interdisciplinary Graduate Program
    UMass Chan Affiliations
    Program in Molecular Medicine
    Document Type
    Doctoral Dissertation
    Publication Date
    2003-05-29
    Keywords
    Recombination
    Genetic
    Gene Expression Regulation
    Chromatin
    Transcription Factors
    Adenosine Triphosphate
    Fungal Proteins
    Enzymes
    Amino Acids, Peptides, and Proteins
    Cells
    Enzymes and Coenzymes
    Genetic Phenomena
    Show allShow less
    
    Metadata
    Show full item record
    Abstract
    The inherently repressive nature of chromatin presents a sizeable barrier for all nuclear processes in which access to DNA is required. Therefore, eukaryotic organisms ranging from yeast to humans rely on a battery of enzymes that disrupt the chromatin structure as a means of regulating DNA transactions. These enzymes can be divided into two broad classes: those that covalently modify histone proteins, and those that actively disrupt nucleosomal structure using the free energy derived from ATP hydrolysis. The latter group, huge, multisubunit ATP-dependent chromatin remodeling factors, are emerging as a common theme in all nuclear processes in which access to DNA is essential. Although transcription is the process for which a requirement for chromatin remodeling is best documented, it is now becoming clear that other processes like replication, recombination and DNA repair rely on it as well. A growing number of ATP-dependent remodeling machines has been uncovered in the last 10 years. Although they differ in their subunit composition, organism or tissue restriction, substrate specificity, and regulating/recruiting partners, it has become increasingly evident that all ATP-dependent chromatin remodeling factors share a similar underlying mechanism. This mechanism is the subject of the studies presented in this thesis. Chromatin-remodeling factors seem to bind both the histone and DNA components of nucleosomes. From a fixed position on nucleosomes, the remodeling factors appear to translocate on the DNA, generating torsional stress on the double helix. This activity has several consequences, including the distortion of the DNA structure on the surface of the histone octamer, the disruption of histone-DNA interactions, and the mobilization of the nucleosome core with respect to the DNA. The work presented in this thesis, along with data reported by other groups, supports the hypothesis that yeast SWI/SNF chromatin remodeling complex and the recombinational repair factor, Rad54p, both employ similar mechanisms to regulate gene transcription, and facilitate homologous DNA pairing and recombination, respectively.
    DOI
    10.13028/res7-qb02
    Permanent Link to this Item
    http://hdl.handle.net/20.500.14038/31890
    Rights
    Copyright is held by the author, with all rights reserved.
    ae974a485f413a2113503eed53cd6c53
    10.13028/res7-qb02
    Scopus Count
    Collections
    Morningside Graduate School of Biomedical Sciences Dissertations and Theses

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Lamar Soutter Library, UMass Chan Medical School | 55 Lake Avenue North | Worcester, MA 01655 USA
    Quick Guide | escholarship@umassmed.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.