Show simple item record

dc.contributor.advisorMerav Socolovsky, Ph.D., MBBS
dc.contributor.authorPorpiglia, Ermelinda
dc.date2022-08-11T08:08:43.000
dc.date.accessioned2022-08-23T16:05:33Z
dc.date.available2022-08-23T16:05:33Z
dc.date.issued2011-08-16
dc.date.submitted2011-10-22
dc.identifier.doi10.13028/xnva-0d81
dc.identifier.urihttp://hdl.handle.net/20.500.14038/31894
dc.description.abstractErythropoietin (Epo) modulates red blood cell production (erythropoiesis) by binding to its receptor and activating STAT5, a Signal Transducer and Activator of Transcription (STAT) protein implicated in both basal and stress erythropoiesis. Epo concentration in serum changes over three orders of magnitude, as it regulates basal erythropoiesis and its acceleration during hypoxic stress. However, it is not known how STAT5 translates the changes in Epo concentration into the required erythropoietic rates. We addressed this question by studying STAT5 phosphorylation, at the single cell level, in developing erythroblasts. We divided erythroid progenitors in tissue into several flow-cytometric subsets and found that each of them exhibited distinct modes of Stat5 activation, based on their developmental stage. STAT5 activation is bistable in mature erythroblasts, resulting in a binary (or digital), low-intensity STAT5 phosphorylation signal (p-Stat5). In early erythroblasts, and in response to stress levels of Epo, the low intensity bistable p-Stat5 signal is superseded by a high-intensity graded, or analog, signal. The gradual shift from high-intensity graded signaling in early erythroblasts to low intensity binary signaling in mature erythroblasts is due to a decline in STAT5 expression with maturation. We were able to convert mature, digital transducing erythroblasts into analog transducers simply by expressing high levels of exogenous STAT5. We found that EpoR-HM mice, expressing a mutant EpoR that lacks STAT5 docking sites, generate the binary, but not the analog, STAT5 signal. Unlike Stat5-null mice, which die perinatally, the EpoR-HM mice are viable but deficient in their response to stress, demonstrating that while binary STAT5 signaling is sufficient to support basal erythropoiesis, analog signaling is required for the stress response. Bistable systems contain a positive loop, which is important for flipping the switch between the two stable ‘on’ or ‘off’ states. We show that bistable activation is the result of an autocatalytic loop in which active STAT5 promotes further STAT5 activation. The isolated STAT5 N-terminal domain, which is not required for STAT5 phosphorylation, enhanced autocatalysis, converting a high intensity graded signal into a high intensity binary response. The N-terminal domain is known to participate in a radical conformational reorientation of STAT5 dimers inherent in STAT5 activation. We propose that the N-terminal domains of active STAT5 dimers facilitate the conformational reorientation of inactive dimers, in a prion-like autocatalytic interaction that underlies bistability and binary signaling. Together, bistable STAT5 activation, combined with a graded response allow erythropoietic rate to faithfully reflect a wide Epo concentration range, while preventing aberrant signaling.
dc.language.isoen_US
dc.rightsCopyright is held by the author, with all rights reserved.
dc.subjectErythropoiesis
dc.subjectErythropoietin
dc.subjectReceptors
dc.subjectErythropoietin
dc.subjectSTAT5 Transcription Factor
dc.subjectAmino Acids, Peptides, and Proteins
dc.subjectBiological Factors
dc.subjectCell and Developmental Biology
dc.subjectCells
dc.subjectCirculatory and Respiratory Physiology
dc.titleDigital and Analog STAT5 Signaling in Erythropoiesis: A Dissertation
dc.typeDoctoral Dissertation
dc.identifier.legacyfulltexthttps://escholarship.umassmed.edu/cgi/viewcontent.cgi?article=1559&context=gsbs_diss&unstamped=1
dc.identifier.legacycoverpagehttps://escholarship.umassmed.edu/gsbs_diss/553
dc.legacy.embargo2014-08-25T00:00:00-07:00
dc.identifier.contextkey2308637
refterms.dateFOA2022-08-27T04:48:09Z
html.description.abstract<p>Erythropoietin (Epo) modulates red blood cell production (erythropoiesis) by binding to its receptor and activating STAT5, a Signal Transducer and Activator of Transcription (STAT) protein implicated in both basal and stress erythropoiesis. Epo concentration in serum changes over three orders of magnitude, as it regulates basal erythropoiesis and its acceleration during hypoxic stress. However, it is not known how STAT5 translates the changes in Epo concentration into the required erythropoietic rates. We addressed this question by studying STAT5 phosphorylation, at the single cell level, in developing erythroblasts.</p> <p>We divided erythroid progenitors in tissue into several flow-cytometric subsets and found that each of them exhibited distinct modes of Stat5 activation, based on their developmental stage. STAT5 activation is bistable in mature erythroblasts, resulting in a binary (or digital), low-intensity STAT5 phosphorylation signal (p-Stat5). In early erythroblasts, and in response to stress levels of Epo, the low intensity bistable p-Stat5 signal is superseded by a high-intensity graded, or analog, signal.</p> <p>The gradual shift from high-intensity graded signaling in early erythroblasts to low intensity binary signaling in mature erythroblasts is due to a decline in STAT5 expression with maturation. We were able to convert mature, digital transducing erythroblasts into analog transducers simply by expressing high levels of exogenous STAT5. We found that EpoR-HM mice, expressing a mutant EpoR that lacks STAT5 docking sites, generate the binary, but not the analog, STAT5 signal. Unlike Stat5-null mice, which die perinatally, the EpoR-HM mice are viable but deficient in their response to stress, demonstrating that while binary STAT5 signaling is sufficient to support basal erythropoiesis, analog signaling is required for the stress response. Bistable systems contain a positive loop, which is important for flipping the switch between the two stable ‘on’ or ‘off’ states. We show that bistable activation is the result of an autocatalytic loop in which active STAT5 promotes further STAT5 activation. The isolated STAT5 N-terminal domain, which is not required for STAT5 phosphorylation, enhanced autocatalysis, converting a high intensity graded signal into a high intensity binary response. The N-terminal domain is known to participate in a radical conformational reorientation of STAT5 dimers inherent in STAT5 activation. We propose that the N-terminal domains of active STAT5 dimers facilitate the conformational reorientation of inactive dimers, in a prion-like autocatalytic interaction that underlies bistability and binary signaling. Together, bistable STAT5 activation, combined with a graded response allow erythropoietic rate to faithfully reflect a wide Epo concentration range, while preventing aberrant signaling.</p>
dc.identifier.submissionpathgsbs_diss/553
dc.contributor.departmentMolecular, Cell and Cancer Biology
dc.description.thesisprogramImmunology and Microbiology


Files in this item

Thumbnail
Name:
Porpiglia_Ermelinda_reduced.pdf
Size:
3.654Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record