Building the Cell's Antenna: Protein Targeting to the Ciliary Membrane: A Dissertation
Authors
Follit, John A.Faculty Advisor
Gregory J. PazourAcademic Program
Interdisciplinary Graduate ProgramUMass Chan Affiliations
Program in Molecular MedicineDocument Type
Doctoral DissertationPublication Date
2012-05-11Keywords
CiliaProtein Transport
Carrier Proteins
Amino Acids, Peptides, and Proteins
Cell and Developmental Biology
Cells
Congenital, Hereditary, and Neonatal Diseases and Abnormalities
Metadata
Show full item recordAbstract
Protruding from the apical surface of nearly every cell in our body lies a specialized sensory organelle—the primary cilium. Eukaryotic cells use these ubiquitous structures to monitor the extracellular environment, defects in which result in an ever-growing list of human maladies termed ciliopathies including obesity, retinal degeneration and polycystic kidney disease. The sensory functions of primary cilia rely on the unique complement of receptors concentrated within the ciliary membrane. Vital to the proper functioning of the cilium is the cell's ability to target specific proteins to the ciliary membrane yet little is known how a cell achieves this highly polarized distribution. IFT20, a subunit of the intraflagellar transport particle is localized to the Golgi complex that is hypothesized to sort proteins to the ciliary membrane. We show that IFT20 is anchored to the Golgi complex by the golgin protein GMAP-210 and mice lacking GMAP210 die at birth with a pleiotropic phenotype that includes growth restriction and heart defects. Cilia on GMAP210 mutant cells have reduced amounts of the membrane protein polycystin-2 localized to them suggesting IFT20 and GMAP-210 function together in the sorting or transport of proteins to the ciliary membrane. To better understand the mechanism of ciliary protein trafficking, we identify a ciliary targeting sequence (CTS) contained within fibrocystin, the gene mutated in autosomal recessive polycystic kidney disease, and investigate a series of proteins required for the delivery of this sequence to the primary cilium. We demonstrate the small G protein Rab8 interacts with the CTS of fibrocystin and controls the ciliary levels of the CTS. Arf4 is another small G protein deemed a key regulator of ciliary protein trafficking. We show Arf4 binds the CTS of fibrocystin but is not absolutely required for trafficking of the fibrocystin CTS to cilia. Arf4 mutant mice are embryonic lethal and die at mid-gestation likely due to defects in the non-ciliated visceral endoderm, where the lack of Arf4 caused defects in cell structure and apical protein localization. This suggests Arf4 is not only important for the efficient transport of fibrocystin to cilia, but also plays critical roles in non-ciliary processes. Together this work aims to elucidate the mechanisms of protein targeting to the ciliary membrane.DOI
10.13028/jxpt-6w74Permanent Link to this Item
http://hdl.handle.net/20.500.14038/31939Rights
Copyright is held by the author, with all rights reserved.ae974a485f413a2113503eed53cd6c53
10.13028/jxpt-6w74