• Login
    View Item 
    •   Home
    • UMass Chan Student Research and Publications
    • Morningside Graduate School of Biomedical Sciences
    • Morningside Graduate School of Biomedical Sciences Dissertations and Theses
    • View Item
    •   Home
    • UMass Chan Student Research and Publications
    • Morningside Graduate School of Biomedical Sciences
    • Morningside Graduate School of Biomedical Sciences Dissertations and Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of eScholarship@UMassChanCommunitiesPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsThis CollectionPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywords

    My Account

    LoginRegister

    Help

    AboutSubmission GuidelinesData Deposit PolicySearchingAccessibilityTerms of UseWebsite Migration FAQ

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A Novel Autophagy Regulatory Mechanism that Functions During Programmed Cell Death: A Dissertation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Chang_Tsun_Kai_Copy.pdf
    Size:
    1.997Mb
    Format:
    PDF
    Download
    Authors
    Chang, Tsun-Kai
    Faculty Advisor
    Eric H. Baehrecke, PhD
    Academic Program
    Cancer Biology
    UMass Chan Affiliations
    Molecular, Cell and Cancer Biology Department
    Document Type
    Doctoral Dissertation
    Publication Date
    2013-09-27
    Keywords
    Dissertations, UMMS
    Autophagy
    Apoptosis
    Drosophila Proteins
    Autophagy
    Apoptosis
    Drosophila Proteins
    Cancer Biology
    Cell Biology
    Cellular and Molecular Physiology
    
    Metadata
    Show full item record
    Abstract
    Autophagy is a cellular process that delivers cytoplasmic materials for degradation by the lysosomes. Autophagy-related (Atg) genes were identified in yeast genetic screens for vehicle formation under stress conditions, and Atg genes are conserved from yeast to human. When cells or animals are under stress, autophagy is induced and Atg8 (LC3 in mammal) is activated by E1 activating enzyme Atg7. Atg8-containing membranes form and surround cargos, close and mature to become the autophagosomes. Autophagosomes fuse with lysosomes, and cargos are degraded by lysosomal enzymes to sustain cell viability. Therefore, autophagy is most frequently considered to function in cell survival. Whether the Atg gene regulatory pathway that was defined in yeast is utilized for all autophagy in animals, as well as if autophagy could function in a cell death scenario, are less understood. The Drosophila larval digestive tissues, such as the midgut of the intestine and the salivary gland, are no longer required for the adult animal and are degraded during the pupal stage of development. Cells stop growing at the end of larval development, and proper cell growth arrest is required for midgut degradation. Ectopic activation of the PI3K/Akt signaling induces cell growth and inhibits autophagy and midgut degradation. Down regulating PI3K/Akt pathway by Pten mis-expression activates autophagy. In addition, mis-expression of autophagy initiator Atg1 inhibits cell growth and knocking down autophagy restore PI3K/Akt activity. Together, these results indicate that autophagy and growth signaling mutually inhibit each other. Midgut destruction relies on the autophagy gene Atg18, but not caspase activation. The intestine length shortens and the cells undergo programmed cell size reduction, a phenomenon that also requires Atg18, before cell death occurs during midgut destruction. To further investigate whether cell size reduction is cell autonomous and requires other Atg genes, we reduced the function of Atg genes in cell clones using either gene mutations or RNAi knockdowns. Indeed, many Atg genes, including Atg8, are required for autophagy and cell size reduction in a cell autonomous manner. Surprisingly, Atg7 is not required for midgut cell size reduction and autophagy even though this gene is essential for stress-induced autophagy. Therefore, we screened for known E1 enzymes that may function in the midgut, and discovered that Uba1 is required for autophagy, size reduction and clearance of mitochondria. Uba1 does not enzymatically substitute for Atg7, and Ubiquitin phenocopies Uba1, suggesting Uba1 functions through ubiquitination of unidentified molecule(s) to regulate autophagy. In conclusion, this thesis describes: First, autophagy participates in midgut degradation and cell death. Second it reveals a previously un-defined role of Uba1 in autophagy regulation. Third it shows that the Atg genes are not functionally conserved and the requirement of some Atg genes can be context dependent.
    DOI
    10.13028/M20S36
    Permanent Link to this Item
    http://hdl.handle.net/20.500.14038/32041
    Rights
    Copyright is held by the author, with all rights reserved.
    ae974a485f413a2113503eed53cd6c53
    10.13028/M20S36
    Scopus Count
    Collections
    Morningside Graduate School of Biomedical Sciences Dissertations and Theses

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Lamar Soutter Library, UMass Chan Medical School | 55 Lake Avenue North | Worcester, MA 01655 USA
    Quick Guide | escholarship@umassmed.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.