hox Gene Regulation and Function During Zebrafish Embryogenesis: A Dissertation
Authors
Weicksel, Steven E.Faculty Advisor
Charles Sagerström, PhDAcademic Program
Biochemistry and Molecular PharmacologyUMass Chan Affiliations
Biochemistry and Molecular PharmacologyDocument Type
Doctoral DissertationPublication Date
2013-10-28Keywords
Dissertations, UMMSGenes, Homeobox
Homeodomain Proteins
Zebrafish
Zebrafish Proteins
Embryonic Development
Nucleosomes
Gene Expression Regulation, Developmental
Homeobox Genes
Homeodomain Proteins
Zebrafish
Zebrafish Proteins
Embryonic Development
Nucleosomes
Developmental Gene Expression Regulation
Developmental Biology
Genetics
Genomics
Molecular Genetics
Metadata
Show full item recordAbstract
Hox genes encode a conserved family of homeodomain containing transcription factors essential for metazoan development. The establishment of overlapping Hox expression domains specifies tissue identities along the anterior-posterior axis during early embryogenesis and is regulated by chromatin architecture and retinoic acid (RA). Here we present the role nucleosome positioning plays in hox activation during embryogenesis. Using four stages of early embryo development, we map nucleosome positions at 37 zebrafish hox promoters. We find nucleosome arrangement to be progressive, taking place over several stages independent of RA. This progressive change in nucleosome arrangement on invariant sequence suggests that trans-factors play an important role in organizing nucleosomes. To further test the role of trans-factors, we created hoxb1b and hoxb1a mutants to determine if the loss of either protein effected nucleosome positions at the promoter of a known target, hoxb1a. Characterization of these mutations identified hindbrain segmentation defects similar to targeted deletions of mouse orthologs Hoxa1 and Hoxb1 and zebrafish hoxb1b and hoxb1a morpholino (MO) loss-of-function experiments. However, we also identified differences in hindbrain segmentation as well as phenotypes in facial motor neuron migration and reticulospinal neuron formation not previously observed in the MO experiments. Finally, we find that nucleosomes at the hoxb1a promoter are positioned differently in hoxb1b-/- embryos compared to wild-type. Together, our data provides new insight into the roles of hoxb1b and hoxb1a in zebrafish hindbrain segmentation and reticulospinal neuron formation and indicates that nucleosome positioning at hox promoters is dynamic, depending on sequence specific factors such as Hox proteins.DOI
10.13028/M24G7VPermanent Link to this Item
http://hdl.handle.net/20.500.14038/32048Rights
Copyright is held by the author, with all rights reserved.ae974a485f413a2113503eed53cd6c53
10.13028/M24G7V
Scopus Count
Collections
Related items
Showing items related by title, author, creator and subject.
-
A truncation allele in vascular endothelial growth factor c reveals distinct modes of signaling during lymphatic and vascular developmentVillefranc, Jacques A.; Nicoli, Stefania; Bentley, Katie; Jeltsch, Michael; Zarkada, Georgia; Moore, John C.; Gerhardt, Holger; Alitalo, Kari; Lawson, Nathan D. (2013-04-01)Vascular endothelial growth factor C (Vegfc) is a secreted protein that guides lymphatic development in vertebrate embryos. However, its role during developmental angiogenesis is not well characterized. Here, we identify a mutation in zebrafish vegfc that severely affects lymphatic development and leads to angiogenesis defects on sensitized genetic backgrounds. The um18 mutation prematurely truncated Vegfc, blocking its secretion and paracrine activity but not its ability to activate its receptor Flt4. When expressed in endothelial cells, vegfc(um18) could not rescue lymphatic defects in mutant embryos, but induced ectopic blood vessel branching. Furthermore, vegfc-deficient endothelial cells did not efficiently contribute to tip cell positions in developing sprouts. Computational modeling together with assessment of endothelial cell dynamics by time-lapse analysis suggested that an autocrine Vegfc/Flt4 loop plays an important role in migratory persistence and filopodia stability during sprouting. Our results suggest that Vegfc acts in two distinct modes during development: as a paracrine factor secreted from arteries to guide closely associated lymphatic vasculature and as an autocrine factor to drive migratory persistence during angiogenesis.
-
Centrin depletion causes cyst formation and other ciliopathy-related phenotypes in zebrafishDelaval, Benedicte; Covassin, Laurence D.; Lawson, Nathan D.; Doxsey, Stephen J. (2011-11-15)Most bona fide centrosome proteins including centrins, small calcium-binding proteins, participate in spindle function during mitosis and play a role in cilia assembly in non-cycling cells. Although the basic cellular functions of centrins have been studied in lower eukaryotes and vertebrate cells in culture, phenotypes associated with centrin depletion in vertebrates in vivo has not been directly addressed. To test this, we depleted centrin2 in zebrafish and found that it leads to ciliopathy phenotypes including enlarged pronephric tubules and pronephric cysts. Consistent with the ciliopathy phenotypes, cilia defects were observed in differentiated epithelial cells of ciliated organs such as the olfactory bulb and pronephric duct. The organ phenotypes were also accompanied by cell cycle deregulation namely mitotic delay resulting from mitotic defects. Overall, this work demonstrates that centrin2 depletion causes cilia-related disorders in zebrafish. Moreover, given the presence of both cilia and mitotic defects in the affected organs, it suggests that cilia disorders may arise from a combination of these defects.
-
The cilia protein IFT88 is required for spindle orientation in mitosisDelaval, Benedicte; Bright, Alison; Lawson, Nathan D.; Doxsey, Stephen J. (2011-03-29)Cilia dysfunction has long been associated with cyst formation and ciliopathies. More recently, misoriented cell division has been observed in cystic kidneys, but the molecular mechanism leading to this abnormality remains unclear. Proteins of the intraflagellar transport (IFT) machinery are linked to cystogenesis and are required for cilia formation in non-cycling cells. Several IFT proteins also localize to spindle poles in mitosis, indicating uncharacterized functions for these proteins in dividing cells. Here, we show that IFT88 depletion induces mitotic defects in human cultured cells, in kidney cells from the IFT88 mouse mutant Tg737(orpk) and in zebrafish embryos. In mitosis, IFT88 is part of a dynein1-driven complex that transports peripheral microtubule clusters containing microtubule-nucleating proteins to spindle poles to ensure proper formation of astral microtubule arrays and thus proper spindle orientation. This work identifies a mitotic mechanism for a cilia protein in the orientation of cell division and has important implications for the etiology of ciliopathies.