We are upgrading the repository! A content freeze is in effect until December 11, 2024. New submissions or changes to existing items will not be allowed during this period. All content already published will remain publicly available for searching and downloading. Updates will be posted in the Website Upgrade 2024 FAQ in the sidebar Help menu. Reach out to escholarship@umassmed.edu with any questions.
Characterization of Innate Immune Pathways in DNA Vaccine-Induced, Antigen-Specific Immune Responses: A Dissertation
Authors
Suschak, John J. IIIFaculty Advisor
Shan Lu, MD, PhDAcademic Program
Immunology and MicrobiologyUMass Chan Affiliations
MedicineDocument Type
Doctoral DissertationPublication Date
2014-12-08Keywords
Dissertations, UMMSVaccination
Vaccines, DNA
Immunity, Innate
Antigens
Vaccination
DNA Vaccines
Innate Immunity
Antigens
Biological Factors
Immunity
Immunoprophylaxis and Therapy
Metadata
Show full item recordAbstract
A major advantage of DNA vaccination is the ability to induce both humoral and cellular immune responses. DNA vaccines are currently used in veterinary medicine, but their tendency to display low immunogenicity in humans has hindered their usage, despite excellent tolerability and safety profiles. Various approaches have been used to improve the immunogenicity of DNA vaccines. Recent human study data re-established the value of DNA vaccines, especially in priming high-level antigen-specific antibody responses. Data suggests that innate immune responses to the DNA vaccine plasmid itself contribute to the immunogenicity of DNA vaccines, however the underlying mechanisms responsible remain unclear. In this dissertation, we investigate the role of innate immunity in shaping antigen-specific adaptive immune responses following DNA vaccination. The current belief is that the cytosolic DNA sensing pathways govern DNA vaccine immunogenicity. To date, only the type I interferon inducing STING/TBK1 regulatory pathway has been identified as required for DNA vaccine immunogenicity. Surprisingly, neither the upstream receptor nor the downstream signaling molecules in this pathway have been characterized. I therefore investigated a candidate cytosolic DNA receptor, as well as the downstream transcription factors required for generation of antigen-specific immune responses. Additionally, the effects of pro-inflammatory signaling on DNA vaccine immunogenicity have yet to be comprehensively studied. Previous studies have only provided indirect evidence for the role of inflammatory v signaling in DNA vaccination. As such, I also investigated the role of the DNA sensing AIM2 inflammasome in DNA vaccination. My data indicates that AIM2 is a key modulator in DNA vaccination via a previously unrecognized connection to type I interferon. Importantly, this marks the first time a DNA vaccine sensor has been identified. Of note, this dissertation represents a departure from many published works in the field. Whereas previous studies have mostly utilized model antigens and only focused on the adaptive immune responses generated, I analyzed the effects on innate immunity as well. Using various innate gene knockout murine models, I quantified antigen-specific humoral and T cell responses, as well as serum cytokine and chemokines following immunization with a clinically relevant DNA vaccine. Overall, this data provides a basis for understanding the mechanisms of DNA vaccination, allowing for the design of more effective vaccines.DOI
10.13028/M29K5PPermanent Link to this Item
http://hdl.handle.net/20.500.14038/32110Rights
Copyright is held by the author, with all rights reserved.ae974a485f413a2113503eed53cd6c53
10.13028/M29K5P
Scopus Count
Collections
Related items
Showing items related by title, author, creator and subject.
-
No, vaccine side effects don’t tell you how well your immune system will protect you from COVID-19Finberg, Robert W. (2021-04-19)It's normal for different people to mount stronger or weaker immune responses to a vaccine, but post-shot side effects won't tell you which you are. Robert Finberg is a physician who specializes in infectious diseases and immunology at the Medical School at the University of Massachusetts. He explains how this perception doesn’t match the reality of how vaccines work.
-
Adjuvant-Specific Serum Cytokine Profiles in the Context of a DNA Prime-Protein Boost HIV-1 Vaccine: A DissertationBuglione-Corbett, Rachel (2013-04-29)In recent years, heterologous prime-boost vaccination constructs have emerged as a promising strategy to generate broad and protective immunity against a variety of pathogens. The utility of DNA vaccination in priming the immune system, in particular, has improved the immunogenicity of vaccines against difficult pathogens such as HIV-1. In addition, many vaccine formulations include an adjuvant to augment immune responses. However, the mechanisms and profiles of many adjuvants remain largely unknown, particularly in the context of such combination immunization approaches. My thesis research studied the effects of several adjuvants, QS-21, aluminum hydroxide, MPL, and ISCOMATRIX™ adjuvant in the context of a previously described pentavalent HIV-1 Env DNA prime-protein boost vaccine, DP6-001. In a murine model, we quantified HIV antigen-specific humoral and T cell responses, as well as pro-inflammatory serum cytokine and chemokines, both shortly after immunization and at the termination of studies. Our data indicates that each candidate adjuvant generates a unique pattern of biomarkers as well as improved immunogenicity in the context of the DP6-001 DNA prime-protein boost vaccine. Additionally, we examined the impact of several innate signaling pathways on the adaptive immunity raised by DP6-001 and adjuvants, as well as on the unique serum cytokine profiles. These studies provide valuable information in selection of an adjuvant for inclusion in future prime-boost strategies, with the goal of enhancing immunogenicity while minimizing reactogenicity. Furthermore, these studies provided insight about the utility of different current adjuvants in a prime-boost formulation, and the unique immune environment induced by DNA priming.
-
Respiratory Syncytial Virus (RSV) Induces Innate Immunity through Toll-Like Receptors and Acquired Immunity via the RSV G Protein: A DissertationMurawski, Matthew R. (2009-07-22)Respiratory syncytial virus (RSV) causes a common infection that is associated with a range of respiratory illnesses from common cold-like symptoms to serious lower respiratory tract illnesses such as pneumonia and bronchiolitis. RSV is the single most important cause of serious lower respiratory tract illness in children < 1 year of age. Host innate and acquired immune responses activated following RSV infection have been suspected as contributing to RSV disease. Toll-like receptors (TLRs) activate innate and acquired immunity and are candidates for playing key roles in the host immune response to RSV. Leukocytes express TLRs including TLR2, TLR6, TLR3, TLR4, and TLR7 that can potentially interact with RSV and promote immune responses following infection. Using knockout mice, we have demonstrated that TLR2 and TLR6 signaling in leukocytes can activate innate immunity against RSV by promoting TNF-α, IL-6, CCL2 (MCP-1), and CCL5 (RANTES) production. As previously noted, TLR4 also contributed to cytokine activation (71, 90). Furthermore, we demonstrated that signals generated following TLR2 and TLR6 activation were important for controlling viral replication in vivo. Additionally, TLR2 interactions with RSV promoted neutrophil migration and dendritic cell activation within the lung. Collectively, these studies indicate that TLR2 is involved in RSV recognition and subsequent innate immune activation and may play a role in modulating acquired immune responses through DCs. Despite the fact that RSV is the single most important cause of infant upper respiratory tract disease, there are no licensed vaccines available to prevent RSV disease. We have developed a virus-like particle (VLP) vaccine candidate for RSV. The VLP is composed of the NP and M proteins of Newcastle disease virus (NDV) and a chimera protein containing the cytoplasmic and transmembrane domains of the NDV HN protein and the ectodomain of the human RSV G protein (H/G). BALB/c mice immunized with 10 or 40 μg total VLP-H/G protein by intraperitoneal or intramuscular inoculation stimulated antibody responses to G protein as good as or better than comparable amounts of UV-inactivated RSV. Furthermore, VLP-H/G induced robust CTL responses in vaccinated animals. Immunization with two or even a single dose of these particles resulted in the complete protection of BALB/c mice from RSV replication in the lungs. Upon RSV challenge of VLP-H/G immunized mice, no enhanced pathology in the lungs was observed, although lungs of mice immunized in parallel with formalin-inactivated RSV (FI-RSV) showed the significant pathology that has been previously observed with FI-RSV vaccination. Thus, the VLP-H/G candidate vaccine was immunogenic in BALB/c mice and prevented replication of RSV in murine lungs with no evidence of immunopathology. These data support further development of virus-like particle vaccine candidates for RSV.