Advancements in the Synthesis and Application of Near-Infrared Imaging Reagents: A Dissertation
Name:
0-Movie_4.1_AcOTFMB_Ox1_DIC.AVI
Size:
27.00Mb
Format:
video/vnd.avi
Description:
Real-time monitoring of AcOTFMB-Ox1 ...
Name:
1-Movie_4.2_AcOTFMB_Ox1_NIR.AVI
Size:
27.00Mb
Format:
video/vnd.avi
Description:
Real-time monitoring of AcOTFMB-Ox1 ...
Name:
2-Movie_4.3_TFMB_Ox1_DIC.AVI
Size:
27.00Mb
Format:
video/vnd.avi
Description:
Real-time monitoring of TFMB-Ox1 ...
Name:
3-Movie_4.4_TFMB_Ox1_NIR.AVI
Size:
27.00Mb
Format:
video/vnd.avi
Description:
Real-time monitoring of TFMB-Ox1 ...
Name:
4-Movie_4.5_AcOTFMB_Ox2_DIC.AVI
Size:
27.00Mb
Format:
video/vnd.avi
Description:
Real-time monitoring of AcOTFMB-Ox2 ...
Name:
5-Movie_4.6_AcOTFMB_Ox2_NIR.AVI
Size:
27.00Mb
Format:
video/vnd.avi
Description:
Real-time monitoring of AcOTFMB-Ox2 ...
Name:
6-Movie_4.7_TFMB_Ox2_DIC.AVI
Size:
27.00Mb
Format:
video/vnd.avi
Description:
Real-time monitoring of TFMB-Ox2 ...
Name:
7-Movie_4.8_TFMB_Ox2_NIR.AVI
Size:
27.00Mb
Format:
video/vnd.avi
Description:
Real-time monitoring of TFMB-Ox2 ...
Authors
Pauff, Steven M.Faculty Advisor
Stephen C. Miller, PhDAcademic Program
Biochemistry and Molecular PharmacologyUMass Chan Affiliations
Biochemistry and Molecular PharmacologyDocument Type
Doctoral DissertationPublication Date
2015-01-23Keywords
Near-Infrared SpectroscopyColoring Agents
Diagnostic Imaging
Esterases
Fluorescein
Fluorescent Dyes
Indicators and Reagents
Optical Imaging
Oxazines
Rhodamines
Metadata
Show full item recordAbstract
Fluorescence-based imaging techniques provide a simple, highly sensitive method of studying live cells and whole organisms in real time. Without question, fluorophores such as GFP, fluorescein, and rhodamines have contributed vastly to our understanding of both cell biology and biochemistry. However, most of the fluorescent molecules currently utilized suffer from one major drawback, the use of visible light. Due to cellular autofluorescence and the absorbance of incident light by cellular components, fluorescence imaging with visible wavelength fluorophores often results in high background noise and thus a low signal-to-noise ratio. Fortunately, this situation can be ameliorated by altering the wavelength of light used during imaging. Near-infrared (NIR) light (650-900 nm) is poorly absorbed by cells; therefore, fluorophores excited by this light provide a high signal-to-noise ratio and low background in cellular systems. While these properties make NIR fluorophores ideal for cellular imaging, most currently available NIR molecules cannot be used in live cells. The first half of this thesis addresses the synthetic difficulties associated with preparing NIR fluorophores that can be used within living systems. Small molecule NIR fluorophores are inherently hydrophobic which makes them unsuitable for use in the aqueous environment of the cell. Water-solubility is imparted to these dyes through highly polar sulfonates, which subsequently prevents the dyes from entering the cell. The novel work presented here details vii synthetic routes to aid in the development of sulfonated NIR fluorophores, which can be delivered into live cells through the inclusion of an esterase-labile sulfonate protecting group. Application of these synthetic techniques should allow for the development of novel NIR fluorophores with intracellular applications. The second half of this thesis addresses the need for novel NIR imaging reagents. Although several classes of NIR scaffolds do exist, most NIR probes are derivatives of a single class, heptamethine indocyanines. The work described here increases this palette by displaying the ability of NIR oxazines to function as an imaging reagent in live cells and in vivo and as a molecular sensor of biologically-relevant environmental conditions. Combined, the work contained herein has the capacity to not only advance the current NIR toolkit, but to expand it so that fluorescence imaging can move out of the dark and into the NIR light.DOI
10.13028/M2BG6BPermanent Link to this Item
http://hdl.handle.net/20.500.14038/32114Notes
Date on signature page is incorrect.
This dissertation includes 8 videos.
Rights
Copyright is held by the author, with all rights reserved.ae974a485f413a2113503eed53cd6c53
10.13028/M2BG6B