We are upgrading the repository! A content freeze is in effect until December 6, 2024. New submissions or changes to existing items will not be allowed during this period. All content already published will remain publicly available for searching and downloading. Updates will be posted in the Website Upgrade 2024 FAQ in the sidebar Help menu. Reach out to escholarship@umassmed.edu with any questions.
Characterization of Envelope-Specific Antibody Response Elicited by HIV-1 Vaccines: A Dissertation
Authors
Chen, YuxinFaculty Advisor
Shan Lu, MD, PhDAcademic Program
Immunology and MicrobiologyUMass Chan Affiliations
MedicineDocument Type
Doctoral DissertationPublication Date
2015-01-06Keywords
Dissertations, UMMSAIDS Vaccines
HIV Antibodies
Gene Products, env
HIV Envelope Protein gp120
HIV Envelope Protein gp160
HIV-1
Vaccines, DNA
AIDS Vaccines
HIV Antibodies
env Gene Products
HIV Envelope Protein gp120
HIV Envelope Protein gp160
HIV-1
DNA Vaccines
Immunology and Infectious Disease
Immunology of Infectious Disease
Immunopathology
Immunoprophylaxis and Therapy
Infectious Disease
Virology
Virus Diseases
Metadata
Show full item recordAbstract
Despite 30 years of intensive research,an effective human immunodeficiency virus (HIV) vaccine still remains elusive. The desirable immune response capable of providing protection against HIV acquisition is still not clear. The accumulating evidence learned from a recent vaccine efficacy correlate study not only confirmed the importance of antibody responses, but also highlighted potential protective functions of antibodies with a broad repertoire of HIV-1 epitope specificities and a wide range of different antiviral mechanisms. This necessitates a deep understanding of the complexity and diversity of antibody responses elicited by HIV-1 vaccines. My dissertation characterizes antibody response profiles of HIV-1 Env antibodies elicited by several novel immunogens or different immunization regimens, in terms of magnitude, persistence, epitope specificity, binding affinity, and biological function. First, to overcome the challenge of studying polyclonal sera without established assays, we expanded a novel platform to isolate Env-specific Rabbit mAbs (RmAb) elicited by DNA prime-protein boost immunization. These RmAbs revealed diverse epitope specificity and cross-reactivity against multiple gp120 antigens from more than one subtype, and several had potent and broad neutralizing activities against sensitive Tier 1 viruses. Further, structural analysis of two V3 mAbs demonstrated that a slight shift of the V3 epitope might have a dramatic impact on their neutralization activity. All of these observations provide a useful tool to study the induction of a desired type of antibody by different immunogens or different immunization regimens. Since heavily glycosylated HIV Env protein is a critical component of an HIV vaccine, we wanted to determine the impact of the HIV Env-associated glycan shield on antibody responses. We were able to produce Env proteins with a selective and homogeneous pattern of N-glycosylation using a glycoengineered yeast cell line. Antigenicity of these novel Env proteins was examined by well-characterized human mAbs. Immunogenicity studies showed that they were immunogenic and elicited gp120- specific antibody responses. More significantly, sera elicited by glycan-modified gp120 protein immunogens revealed better neutralizing activities and increased diversity of epitopes compared to sera elicited by traditional gp120 produced in Chinese Hamster Ovary (CHO) cells. Further, we examined the impact of the delivery order of DNA and protein immunization on antibody responses. We found that DNA prime-protein boost induced a comparable level of Env-specific binding Abs at the peak immunogenicity point to codelivery of DNA. However, antibody responses from DNA prime-protein boost had high avidity and diverse specificities, which improved potency and breadth of neutralizing Abs against Tier 1 viruses. Our data indicate that DNA vaccine priming of the immune system is essential for generation of high-quality antibodies. Additionally, we determined the relative immunogenicity of gp120 and gp160 Env in the context of DNA prime-protein boost vaccination to induce high-quality antibody responses. Immunized sera from gp120 DNA primed animals, but not those primed with gp160 DNA, presented with distinct antibody repertoire specificities, a high magnitude of CD4 binding site-directed binding capabilities as well as neutralizing activities. We confirmed the importance of using the gp120 Env form at the DNA priming phase, which directly determined the quality of antibody response.DOI
10.13028/M2Z88MPermanent Link to this Item
http://hdl.handle.net/20.500.14038/32124Rights
Copyright is held by the author, with all rights reserved.ae974a485f413a2113503eed53cd6c53
10.13028/M2Z88M
Scopus Count
Collections
Related items
Showing items related by title, author, creator and subject.
-
FC Receptor-Mediated Activities of Env-Specific Monoclonal Antibodies Generated from Human Volunteers Receiving a DNA Prime-Protein Boost HIV Vaccine: A DissertationCosta, Matthew R. (2016-10-12)Human immunodeficiency type 1 (HIV-1) is able to elicit broadly potent neutralizing antibodies in a very small subset of individuals only after several years’ infection and as a result, vaccines that elicit these types of antibodies have been difficult to design. The RV144 trial showed that a moderate protection is possible, which may correlate with antibody dependent cellular cytotoxicity (ADCC) activity. Previous studies in the Lu lab demonstrated that in an HIV-1 vaccine phase I trial, DP6-001, a polyvalent Env DNA prime-protein boost formulation, could elicit potent and broadly reactive, gp120-specific antibodies with positive neutralization activities along with multiple Fc mediated effector functions. I developed a protocol for the production and analysis of HIV-1 Env-specific human monoclonal antibodies (mAbs) isolated from these DP6-001 vaccinees. By utilizing a labeled gp120 bait to isolate Env specific B cells, paired heavy and light chain immunoglobulin (Ig) genes were cloned and allowed for the production of monoclonal antibodies with specificity for gp120. By using this protocol, 13 isolated mAbs from four DP6-001 vaccinees showed broad binding activities to gp120 proteins of diverse subtypes, both autologous and heterologous to vaccine immunogens, with mostly conformational epitopes and a few V3 and C5 specific mAbs. Equally cross-reactive Fc-mediated functional activities, including ADCC and antibody dependent cellular phagocytosis (ADCP), were present with both immune sera and isolated mAbs, confirming the induction of non-neutralizing functional antibodies by the DNA prime- protein boost vaccination. Elicitation of broadly reactive mAbs by vaccination in healthy human volunteers confirms the value of the polyvalent formulation in this HIV-1 vaccine design.
-
Human immunodeficiency virus type 1 (HIV-1) gp120-specific antibodies in neonates receiving an HIV-1 recombinant gp120 vaccineMcFarland, Elizabeth J.; Borkowsky, William; Fenton, Terry; Wara, Diane; McNamara, James; Samson, Pearl; Kang, Minhee; Mofenson, Lynne M.; Cunningham, Coleen; Duliege, Ann-Marie; et al. (2001-11-15)Infants born to human immunodeficiency virus type 1 (HIV-1)-infected mothers were immunized at birth and at ages 4, 12, and 20 weeks with low-, medium-, or high-dose recombinant gp120 vaccine with MF59 adjuvant (HIV-1(SF-2); n=52) or with MF59 alone as a placebo (n=9). An accelerated schedule (birth and ages 2, 8, and 20 weeks) was used for an additional 10 infants receiving the defined optimal dose and for 3 infants receiving placebo. At 24 weeks, anti-gp120 ELISA titers were greater for vaccine-immunized than for placebo-immunized infants on both schedules, and 87% of vaccinees had a vaccine-induced antibody response. At 12 weeks, antibody titers of infants on the accelerated vaccine schedule exceeded those of infants receiving placebo (4949 vs. 551; P=.01), and 63% of the vaccinees met the response criteria. Thus, an accelerated schedule of gp120 vaccinations generated an antibody response to HIV-1 envelope distinct from transplacental maternal antibody by age 12 weeks. These results provide support for further studies of vaccine strategies to prevent mother-to-infant HIV-1 transmission.
-
Screening of primary gp120 immunogens to formulate the next generation polyvalent DNA prime-protein boost HIV-1 vaccinesWang, Shixia; Chou, Te-Hui; Hackett, Anthony; Efros, Veronica; Wang, Yan; Han, Dong; Wallace, Aaron; Chen, Yuxin; Hu, Guangnan; Liu, Shuying; et al. (2017-12-02)Our previous preclinical studies and a Phase I clinical trial DP6-001 have indicated that a polyvalent Env formulation was able to elicit broadly reactive antibody responses including low titer neutralizing antibody responses against viral isolates of subtypes A, B, C and AE. In the current report, a panel of 62 gp120 immunogens were screened in a rabbit model to identify gp120 immunogens that can elicit improved binding and neutralizing antibody responses and some of them can be included in the next polyvalent formulation. Only about 19% of gp120 immunogens in this panel were able to elicit neutralizing antibodies against greater than 50% of the viruses included in a high throughput PhenoSense neutralization assay when these immuongens were tested as a DNA prime followed by a fixed 5-valent gp120 protein vaccine boost. The new polyvalent formulation, using five gp120 immunogens selected from this subgroup, elicited improved quality of antibody responses in rabbits than the previous DP6-001 formulation. More significantly, this new polyvalent formulation elicited higher antibody responses against a panel of gp70V1/V2 antigens expressing V1/V2 sequences from diverse subtypes. Bioinformatics analysis supports the design of a 4-valent or 5-valent formulation using gp120 immunogens from this screening study to achieve a broad coverage against 16 HIV-1 subtypes.