Transcriptional Regulation of the Drosophila Peptidoglycan Sensor PGRP-LC by the Steroid Hormone Ecdysone: A Masters Thesis
Authors
Tong, MeiFaculty Advisor
Eric Baehrecke, PhDAcademic Program
Immunology and MicrobiologyUMass Chan Affiliations
Molecular, Cell and Cancer Biology DepartmentDocument Type
Master's ThesisPublication Date
2015-09-05Keywords
Theses, UMMSEcdysone
Peptidoglycan
Carrier Proteins
Drosophila
Drosophila Proteins
Gene Expression Regulation
Transcription Factors
Immunity, Innate
Ecdysone
Peptidoglycan
Carrier Proteins
Drosophila
Drosophila Proteins
Gene Expression Regulation
Transcription Factors
Innate Immunity
Bioinformatics
Genetics
Immunity
Metadata
Show full item recordAbstract
Drosophila is host to the steroid hormone ecdysone, which regulates development and immune functions using a common group of transcription factors. Developmentally-induced ecdysone pulses activate the expression of the EcR, BR-C, HR46, Eip74EF, Eip75B, Eip78C, and Eip93F, which assume control of hundreds of other genes involved in the transition from larva to pupa stage. Many of the transcription factors are related to mammalian nuclear hormone receptors by homology. In addition to these transcription factors, the ecdysoneregulated GATA factors SRP and PNR are required for the proper expression of the peptidoglycan sensor PGRP-LC, which belongs to a conserved class of proteins in innate immunity. Although the transcriptional network has been elucidated in development, it is unclear why ecdysone control of PGRP-LC gene activity involves these nine transcription factors and how ecdysone is regulated in the context of an infection in vivo. An ecdysone-activated enhancer was located upstream of the PGRP-LC locus using a reporter plasmid. Female flies that lacked the enhancer had reduced PGRP-LC expression, but survived infection. Male flies did not experience these changes. Therefore, PGRP-LC enhancer appears to be a female-specific cis-regulatory element. The lack of survival phenotype could be caused by using an improper injection site. Bioinformatics software was used to identify putative individual and overlapping binding sites for some transcription factors. Site-directed mutations of the motifs reduced PGRP-LC promoter activity without abolishing the signal. These results suggest that the transcription factors assemble at multiple locations on the PGRP-LC enhancer and form strong protein-protein bonds. Septic injury led to elevated ecdysone in whole flies, which could be a neuroendocrine response to stress similar to the mammalian system. Steroid hormone regulation of immune receptors is a common theme in humans and flies, and these results could advance our understanding of the transcriptional regulation of related genes and gender differences observed in innate immune responses at the transcriptional level.DOI
10.13028/M29W2NPermanent Link to this Item
http://hdl.handle.net/20.500.14038/32169Rights
Copyright is held by the author, with all rights reserved.ae974a485f413a2113503eed53cd6c53
10.13028/M29W2N
Scopus Count
Collections
Related items
Showing items related by title, author, creator and subject.
-
From Neurodegeneration to Infertility and Back - Exploring Functions of Two Genes: ARMC4 and TARDBP: A DissertationCheng, Wei (2014-01-10)Amyotrophic Lateral Sclerosis (ALS) is an adult-onset progressive neurodegenerative disease that causes degeneration in both upper and lower motor neurons. ALS progresses relentlessly after the onset of the disease, with most patients die within 3-5 years of diagnosis, largely due to respiratory failure. Since SOD1 became the first gene whose mutations were associated with ALS in 1993, more than 17 ALS causative genes have been identified. Among them, TAR DNA-binding protein (TARDBP) lies in the central of ALS pathology mechanism study, because TDP43 proteinopathy is observed not only in familial ALS cases carrying TARDBP mutations, but also in most of the sporadic ALS cases, which account for 90% of the whole ALS population. Several TDP43 overexpression mouse models have been successfully generated to study the gain-of-toxicity mechanism of TDP43 in ALS development, while the investigation of loss-of-function mechanism which could also contribute to ALS still awaits a proper mouse model. The major difficulty in generating TARDBP knock out mouse model lies in the fact that TARDBP is a development essential gene and complete depletion of TDP43 function causes embryonic lethality. In chapter I, I reviewed the recent advances in ALS study. Emphasis was given to ALS mouse models, especially TARDBP ALS mouse model. In Chapter II, I made a Tet-responsive construct that contains mCherry, a fluorescent protein, as an indicator for the expression of the artificial miRNA (amiTDP) residing in the 3’UTR of mCherry and targeting TARDBP. The construct was tested in NSC34 cells and TRE-mCherry-amiTDP43 transgenic mouse was generated with this construct. Crossing TRE-mCherry-amiTDP43 mouse with mPrp-tTA mouse, mCherry expression was successfully induced in mouse forebrain and cerebellum, but not in other tissues including spinal cord. By quantitative real-time PCR, amiTDP43 expression was confirmed to be coupled with mCherry expression. Fluorescent immunostaining revealed that mCherry was expressed in neurons, but not in astrocytes or microglia cells, and that in mCherry positive cells, TDP43 was significantly knocked down. Results from Nissl staining and GFAP immunostaining suggested that decrease of TDP43 in forebrain neuron only was not sufficient to cause neurodegeneration and neuron loss. In chapter III, I investigated the function of Armadillo Containing Protein 4 (ARMC4), which was originally considered ALS causative gene. Our study of the function of CG5155, the possible homolog of ARMC4 in Drosophila, indicated that CG5155 is a male fertility gene that is involved in spermatogenesis. Therefore, we have named this gene Gudu. The transcript of Gudu is highly enriched in adult testes. Knockdown of Gudu by a ubiquitous driver leads to defects in the formation of the individualization complex that is required for spermatid maturation, thereby impairing spermatogenesis. Furthermore, testis-specific knockdown of Gudu by crossing the RNAi lines with Bam-Gal4 driver is sufficient to cause the infertility and defective spermatogenesis. Since Gudu is highly homologous to vertebrate ARMC4, also an Armadillo-repeat-containing protein enriched in testes, our results suggest that Gudu and ARMC4 is a subfamily of Armadillo-repeat containing proteins with an evolutionarily conserved function in spermatogenesis.
-
A Novel Role of UAP56 in piRNA Mediated Transposon Silencing: A DissertationZhang, Fan (2013-08-02)Transposon silencing is required to maintain genome stability. The non-coding piRNAs effectively suppress of transposon activity during germline development. In the Drosophila female germline, long precursors of piRNAs are transcribed from discrete heterochromatic clusters and then processed into primary piRNAs in the perinuclear nuage. However, the detailed mechanism of piRNA biogenesis, specifically how the nuclear and cytoplasmic processes are connected, is not well understood. The nuclear DEAD box protein UAP56 has been previously implicated in protein-coding gene transcript splicing and export. I have identified a novel function of UAP56 in piRNA biogenesis. In Drosophila egg chambers, UAP56 co-localizes with the cluster-associated HP1 variant Rhino. Nuage is a germline-specific perinuclear structure rich in piRNA biogenesis proteins, including Vasa, a DEAD box with an established role in piRNA production. Vasa-containing nuage granules localize directly across the nuclear envelope from cluster foci containing UAP56 and Rhino, and cluster transcripts immunoprecipitate with both Vasa and UAP56. Significantly, a charge-substitution mutation that alters a conserved surface residue in UAP56 disrupts co-localization with Rhino, germline piRNA production, transposon silencing, and perinuclear localization of Vasa. I therefore propose that UAP56 and Vasa function in a piRNA-processing compartment that spans the nuclear envelope.
-
TAK1-Mediated Post-Translational Modifications Modulate Immune Response: A DissertationChen, Li (2015-05-15)Innate immunity is the first line of defense against invading pathogens. It provides immediate protection by initiating both cellular and humoral immune reactions in response to a wide range of infections. It is also important to the development of long-lasting and pathogen-specific adaptive immunity. Thus, studying of the innate immunity, especially the pathogen recognition and signaling modulation, is crucial for understanding the intrinsic mechanisms underlying the host defense, as well as contributing the development of the fight against infectious diseases. Drosophila is an ideal model organism for study of innate immunity. Comparing to mammals, Drosophila immunity is relative conserved and less redundant. A variety of molecular and genetic tools available add further convenience to the research in this system. My work is focused on the signaling modulation by post-translational modification after activation. In these studies I demonstrated in the center of Imd pathway, the Imd protein undergoes proteolytic cleavage, K63-polyubiquitination, phosphorylation, K63-deubiquitination and K48-polyubiquitination/degradation in a stimulation-dependent manner. These modifications of Imd play a crucial role in regulating signaling in response to infection. The characterization of ubiquitin-editing event provides a new insight into the molecular mechanisms underlying the activation and termination of insect immune signaling pathway.