• Login
    View Item 
    •   Home
    • UMass Chan Student Research and Publications
    • Morningside Graduate School of Biomedical Sciences
    • Morningside Graduate School of Biomedical Sciences Dissertations and Theses
    • View Item
    •   Home
    • UMass Chan Student Research and Publications
    • Morningside Graduate School of Biomedical Sciences
    • Morningside Graduate School of Biomedical Sciences Dissertations and Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of eScholarship@UMassChanCommunitiesPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsThis CollectionPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywords

    My Account

    LoginRegister

    Help

    AboutSubmission GuidelinesData Deposit PolicySearchingAccessibilityTerms of UseWebsite Migration FAQ

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Structure and Function of Cytoplasmic Dynein: a Thesis

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Paschal_Bryce.pdf
    Size:
    8.415Mb
    Format:
    PDF
    Download
    Authors
    Paschal, Bryce M.
    Faculty Advisor
    Dr. Richard B. Vallee
    Academic Program
    Cell Biology
    UMass Chan Affiliations
    Cell Biology
    Document Type
    Doctoral Dissertation
    Publication Date
    1992-07-01
    Keywords
    Cell Movement
    Amino Acids, Peptides, and Proteins
    Cells
    Enzymes and Coenzymes
    Genetic Phenomena
    Nucleic Acids, Nucleotides, and Nucleosides
    
    Metadata
    Show full item record
    Abstract
    In previous work I described the purification and properties of the microtubule-based mechanochemical ATPase cytoplasmic dynein. Cytoplasmic dynein was found to produce force along microtubules in the direction corresponding to retrograde axonal transport. Cytoplasmic dynein has been identified in a variety of eukaryotes including yeast and human, and there is a growing body of evidence suggesting that this "molecular motor" is responsible for the transport of membranous organelles and mitotic chromosomes. The first part of this thesis investigates the molecular basis of microtubule-activation of the cytoplasmic dynein ATPase. By analogy with other mechanoenzymes, this appears to accelerate the rate-limiting step of the cross-bridge cycle, ADP release. Using limited proteolysis, site-directed antibodies, and N-terminal microsequencing, I identified the acidic C-termini of α and β-tubulin as the domains responsible for activation of the dynein ATPase. The second part of this thesis investigates the structure of the 74 kDa subunit of cytoplasmic dynein. The amino acid sequence deduced from cDNA clones predicts a 72,753 dalton polypeptide which includes the amino acid sequences of nine peptides determined by microsequencing. Northern analysis of rat brain poly(A) revealed an abundant 2.9 kb mRNA. However, PCR performed on first strand cDNA, together with the sequence of a partially matching tryptic peptide, indicate the existence of three isoforms. The C-terminal half is 26.4% identical and 47.7% similar to the product of the Chlamydomonas ODA6 gene, a 70 kDa subunit of flagellar outer arm dynein. Based on what is known about the Chlamydomonas70 kDa subunit, I suggest that the 74 kDa subunit is responsible for targeting cytoplasmic dynein to membranous organelles and kinetochores of mitotic chromosomes. The third part of this thesis investigates a 50 kDa polypeptide which co-purifies with cytoplasmic dynein on sucrose density gradients. Monoclonal antibodies were produced against the 50 kDa subunit and used to show that it is a component of a distinct 20S complex which contains additional subunits of 45 and 150 kDa. Moreover, like cytoplasmic dynein, the 50 kDa polypeptide localizes to kinetochores of metaphase chromosomes by light and electron microscopy. The 50 kDa-associated complex is reported to stimulate cytoplasmic dynein-mediated organelle motility in vitro. The complex is, therefore, a candidate for modulating cytoplasmic dynein activity during mitosis.
    DOI
    10.13028/zk8v-xy13
    Permanent Link to this Item
    http://hdl.handle.net/20.500.14038/32190
    Notes

    Some images did not scan well. Please see print version for images.

    Rights
    Copyright is held by the author, with all rights reserved.
    ae974a485f413a2113503eed53cd6c53
    10.13028/zk8v-xy13
    Scopus Count
    Collections
    Morningside Graduate School of Biomedical Sciences Dissertations and Theses

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Lamar Soutter Library, UMass Chan Medical School | 55 Lake Avenue North | Worcester, MA 01655 USA
    Quick Guide | escholarship@umassmed.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.