We are upgrading the repository! A content freeze is in effect until December 6, 2024. New submissions or changes to existing items will not be allowed during this period. All content already published will remain publicly available for searching and downloading. Updates will be posted in the Website Upgrade 2024 FAQ in the sidebar Help menu. Reach out to escholarship@umassmed.edu with any questions.
Roles of the Mother Centriole Appendage Protein Cenexin in Microtubule Organization during Cell Migration and Cell Division: A Dissertation
Authors
Hung, Hui-FangFaculty Advisor
Stephen Doxsey, PhDAcademic Program
Interdisciplinary Graduate ProgramUMass Chan Affiliations
Program in Molecular MedicineDocument Type
Doctoral DissertationPublication Date
2016-08-03Keywords
Dissertations, UMMSHeat-Shock Proteins
Cell Division
Cell Movement
Cell Polarity
Centrioles
Centrosome
Endosomes
Epithelial Cells
Microtubule-Organizing Center
Microtubules
Heat-Shock Proteins
Cell Division
Cell Movement
Cell Polarity
Centrioles
Centrosome
Endosomes
Epithelial Cells
Microtubule-Organizing Center
Microtubules
Cenexin
Cell Biology
Cellular and Molecular Physiology
Metadata
Show full item recordAbstract
Epithelial cells are necessary building blocks of the organs they line. Their apicalbasolateral polarity, characterized by an asymmetric distribution of cell components along their apical-basal axis, is a requirement for normal organ function. Although the centrosome, also known as the microtubule organizing center, is important in establishing cell polarity the mechanisms through which it achieves this remain unclear. It has been suggested that the centrosome influences cell polarity through microtubule cytoskeleton organization and endosome trafficking. In the first chapter of this thesis, I summarize the current understanding of the mechanisms regulating cell polarity and review evidence for the role of centrosomes in this process. In the second chapter, I examine the roles of the mother centriole appendages in cell polarity during cell migration and cell division. Interestingly, the subdistal appendages, but not the distal appendages, are essential in both processes, a role they achieve through organizing centrosomal microtubules. Depletion of subdistal appendages disrupts microtubule organization at the centrosome and hence, affects microtubule stability. These microtubule defects affect centrosome reorientation and spindle orientation during cell migration and division, respectively. In addition, depletion of subdistal appendages affects the localization and dynamics of apical polarity proteins in relation to microtubule stability and endosome recycling. Taken together, our results suggest the mother centriole subdistal appendages play an essential role in regulating cell polarity. A discussion of the significance of these results is included in chapter three.DOI
10.13028/M2QC73Permanent Link to this Item
http://hdl.handle.net/20.500.14038/32215Rights
Copyright is held by the author, with all rights reserved.ae974a485f413a2113503eed53cd6c53
10.13028/M2QC73
Scopus Count
Collections
Related items
Showing items related by title, author, creator and subject.
-
Mitochondrial association of a plus end-directed microtubule motor expressed during mitosis in DrosophilaPereira, Andrea J.; Dalby, Brian; Stewart, Russell J.; Doxsey, Stephen J.; Goldstein, Lawrence S. B. (1997-03-10)The kinesin superfamily is a large group of proteins (kinesin-like proteins [KLPs]) that share sequence similarity with the microtubule (MT) motor kinesin. Several members of this superfamily have been implicated in various stages of mitosis and meiosis. Here we report our studies on KLP67A of Drosophila. DNA sequence analysis of KLP67A predicts an MT motor protein with an amino-terminal motor domain. To prove this directly, KLP67A expressed in Escherichia coli was shown in an in vitro motility assay to move MTs in the plus direction. We also report expression analyses at both the mRNA and protein level, which implicate KLP67A in the localization of mitochondria in undifferentiated cell types. In situ hybridization studies of the KLP67A mRNA during embryogenesis and larval central nervous system development indicate a proliferation-specific expression pattern. Furthermore, when affinity-purified anti-KLP67A antisera are used to stain blastoderm embryos, mitochondria in the region of the spindle asters are labeled. These data suggest that KLP67A is a mitotic motor of Drosophila that may have the unique role of positioning mitochondria near the spindle.
-
Chlamydomonas reinhardtii hydin is a central pair protein required for flagellar motilityLechtreck, Karl-Ferdinand; Witman, George B. (2007-02-14)Mutations in Hydin cause hydrocephalus in mice, and HYDIN is a strong candidate for causing hydrocephalus in humans. The gene is conserved in ciliated species, including Chlamydomonas reinhardtii. An antibody raised against C. reinhardtii hydin was specific for an approximately 540-kD flagellar protein that is missing from axonemes of strains that lack the central pair (CP). The antibody specifically decorated the C2 microtubule of the CP apparatus. An 80% knock down of hydin resulted in short flagella lacking the C2b projection of the C2 microtubule; the flagella were arrested at the switch points between the effective and recovery strokes. Biochemical analyses revealed that hydin interacts with the CP proteins CPC1 and kinesin-like protein 1 (KLP1). In conclusion, C. reinhardtii hydin is a CP protein required for flagellar motility and probably involved in the CP-radial spoke control pathway that regulates dynein arm activity. Hydrocephalus caused by mutations in hydin likely involves the malfunctioning of cilia because of a defect in the CP.
-
LC2, the chlamydomonas homologue of the t complex-encoded protein Tctex2, is essential for outer dynein arm assemblyPazour, Gregory J.; Koutoulis, Anthony; Benashski, Sharon E.; Dickert, Bethany L.; Sheng, Hong; Patel-King, Ramila S.; King, Stephen M.; Witman, George B. (1999-10-08)Tctex2 is thought to be one of the distorter genes of the mouse t haplotype. This complex greatly biases the segregation of the chromosome that carries it such that in heterozygous +/t males, the t haplotype is transmitted to >95% of the offspring, a phenomenon known as transmission ratio distortion. The LC2 outer dynein arm light chain of Chlamydomonas reinhardtii is a homologue of the mouse protein Tctex2. We have identified Chlamydomonas insertional mutants with deletions in the gene encoding LC2 and demonstrate that the LC2 gene is the same as the ODA12 gene, the product of which had not been identified previously. Complete deletion of the LC2/ODA12 gene causes loss of all outer arms and a slow jerky swimming phenotype. Transformation of the deletion mutant with the cloned LC2/ODA12 gene restores the outer arms and rescues the motility phenotype. Therefore, LC2 is required for outer arm assembly. The fact that LC2 is an essential subunit of flagellar outer dynein arms allows us to propose a detailed mechanism whereby transmission ratio distortion is explained by the differential binding of mutant (t haplotype encoded) and wild-type dyneins to the axonemal microtubules of t-bearing or wild-type sperm, with resulting differences in their motility.