We are upgrading the repository! A content freeze is in effect until December 6, 2024. New submissions or changes to existing items will not be allowed during this period. All content already published will remain publicly available for searching and downloading. Updates will be posted in the Website Upgrade 2024 FAQ in the sidebar Help menu. Reach out to escholarship@umassmed.edu with any questions.
Authors
Akie, Thomas E.Faculty Advisor
Marcus P. Cooper, MDAcademic Program
MD/PhDUMass Chan Affiliations
MedicineDocument Type
Doctoral DissertationPublication Date
2015-10-02Keywords
Dissertations, UMMSNon-alcoholic Fatty Liver Disease
Oxidative Phosphorylation
Non-alcoholic Fatty Liver Disease
Oxidative Phosphorylation
Cellular and Molecular Physiology
Digestive System Diseases
Hepatology
Metadata
Show full item recordAbstract
Non-alcoholic fatty liver disease (NAFLD) is an increasingly prevalent issue in the modern world, predisposing patients to serious pathology such as cirrhosis and hepatocellular carcinoma. Mitochondrial dysfunction, and in particular, diminished hepatic oxidative phosphorylation (OXPHOS) capacity, have been observed in NAFLD livers, which may participate in NAFLD pathogenesis. To examine the role of OXPHOS in NAFLD, we generated a model of enhanced hepatic OXPHOS using mice with liver-specific transgenic expression of LRPPRC, a protein which activates mitochondrial transcription and augments OXPHOS capacity. When challenged with high-fat feeding, mice with enhanced hepatic OXPHOS were protected from the development of liver steatosis and inflammation, critical components in the pathogenesis of NAFLD. This protection corresponded to increased liver and whole-body insulin sensitivity. Moreover, mice with enhanced hepatic OXPHOS have increased availability of oxidized NAD+, which promotes complete fatty acid oxidation in hepatocytes. Interestingly, mice with enhanced hepatic OXPHOS were also protected from obesogenic effects of long-term high-fat feeding. Consistent with this, enhanced hepatic OXPHOS increased energy expenditure and adipose tissue oxidative gene expression, suggesting a communication between the liver and adipose tissue to promote thermogenesis. Examination of pro-thermogenic molecules revealed altered bile acid composition in livers and serum of LRPPRC transgenic mice. These mice had increased expression of bile acid synthetic enzymes, genes which are induced by NAD+ dependent deacetylase SIRT1 activation of the transcriptional co-regulator PGC-1a. These findings suggest that enhanced hepatic OXPHOS transcriptionally regulates bile acid synthesis and dictates whole-body energy expenditure, culminating in protection from obesity.DOI
10.13028/M2388VPermanent Link to this Item
http://hdl.handle.net/20.500.14038/32231Rights
Copyright is held by the author, with all rights reserved.ae974a485f413a2113503eed53cd6c53
10.13028/M2388V