• Login
    View Item 
    •   Home
    • UMass Chan Student Research and Publications
    • Morningside Graduate School of Biomedical Sciences
    • Morningside GSBS Dissertations and Theses
    • View Item
    •   Home
    • UMass Chan Student Research and Publications
    • Morningside Graduate School of Biomedical Sciences
    • Morningside GSBS Dissertations and Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of eScholarship@UMassChanCommunitiesPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsThis CollectionPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsProfilesView

    My Account

    LoginRegister

    Help

    AboutSubmission GuidelinesData Deposit PolicySearchingAccessibilityTerms of UseWebsite Migration FAQ

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Intergenerational Effects of Nicotine in an Animal Model of Paternal Nicotine Exposure

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Vallaster_Markus_PhD_thesis_GS ...
    Size:
    6.338Mb
    Format:
    PDF
    Download
    Authors
    Vallaster, Markus Parzival
    Faculty Advisor
    Oliver J. Rando
    Academic Program
    Interdisciplinary Graduate Program
    UMass Chan Affiliations
    Biochemistry and Molecular Pharmacology
    Document Type
    Doctoral Dissertation
    Publication Date
    2017-08-07
    Keywords
    chromosomes
    epigenetics
    genes
    mouse
    paternal effects
    substance abuse
    neuroscience
    Behavioral Neurobiology
    Biochemical Phenomena, Metabolism, and Nutrition
    Cell Biology
    Cellular and Molecular Physiology
    Developmental Neuroscience
    Genetics
    Molecular Genetics
    Other Pharmacology, Toxicology and Environmental Health
    Show allShow less
    
    Metadata
    Show full item record
    Abstract
    Environmental conditions imposed onto organisms during certain phases of their life cycles such as embryogenesis or puberty can not only impact the organisms’ own health, but also affect subsequent generations. The underlying mechanisms causing intergenerational phenotypes are not encoded in the genome, but the result of reversible epigenetic modifications. This work investigates in a mouse model the impact of paternal nicotine exposure on the next generation regarding addictive behavior modulation, metabolic changes, and molecular mechanisms. It provides evidence that male offspring from nicotine-exposed fathers (NIC offspring) is more resistant to lethal doses of nicotine. This phenotype is gender-specific and depends on short-term environmental challenges with low doses of nicotine prior to the LD50 application. The observed survival phenotype is not restricted to nicotine as drug of abuse, but also presents itself, when NIC offspring is challenged with a cocaine LD50 after acclimatization to low doses of either nicotine or cocaine. Functionally, NIC offspring metabolizes nicotine faster than control. Mechanistically, NIC offspring livers show global up-regulation of xenobiotic processing genes (XPG), an effect that is even more pronounced in primary hepatocyte cultures. Being known targets of Constitutive Androstane Receptor (CAR) and Pregnane X Receptor (PXR), these XPGs show higher baseline expression in naïve NIC offspring livers. Nicotine’s action on the brain’s reward circuitry does not appear to be of biological significance in our model system. Taken together, paternal nicotine exposure leads to a non-specific and conditional phenotype in male NIC offspring that may provide a general survival advantage against xenobiotic challenges.
    DOI
    10.13028/M2W388
    Permanent Link to this Item
    http://hdl.handle.net/20.500.14038/32294
    Rights
    Copyright is held by the author, with all rights reserved.
    ae974a485f413a2113503eed53cd6c53
    10.13028/M2W388
    Scopus Count
    Collections
    Morningside GSBS Dissertations and Theses

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Lamar Soutter Library, UMass Chan Medical School | 55 Lake Avenue North | Worcester, MA 01655 USA
    Quick Guide | escholarship@umassmed.edu
    Works found in eScholarship@UMassChan are protected by copyright unless otherwise indicated.
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.