• Login
    View Item 
    •   Home
    • UMass Chan Student Research and Publications
    • Morningside Graduate School of Biomedical Sciences
    • Morningside Graduate School of Biomedical Sciences Dissertations and Theses
    • View Item
    •   Home
    • UMass Chan Student Research and Publications
    • Morningside Graduate School of Biomedical Sciences
    • Morningside Graduate School of Biomedical Sciences Dissertations and Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of eScholarship@UMassChanCommunitiesPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsThis CollectionPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywords

    My Account

    LoginRegister

    Help

    AboutSubmission GuidelinesData Deposit PolicySearchingAccessibilityTerms of UseWebsite Migration FAQ

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Analysis of Temperature Sensing in <em>Yersinia pestis</em>: A Dissertation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Hoe_Nancy.pdf
    Size:
    7.610Mb
    Format:
    PDF
    Download
    Authors
    Hoe, Nancy Palme
    Faculty Advisor
    Jon D. Goguen
    Academic Program
    Molecular Genetics and Microbiology
    UMass Chan Affiliations
    Microbiology and Physiological Systems
    Document Type
    Doctoral Dissertation
    Publication Date
    1994-01-01
    Keywords
    Bacterial Proteins
    Yersinia pestis
    Amino Acids, Peptides, and Proteins
    Bacteria
    Genetic Phenomena
    
    Metadata
    Show full item record
    Abstract
    The lcrF gene of Yersinia pestis, the etiological agent of plague, encodes a transcription activator responsible for inducing expression of several virulence-related proteins (Yops) in response to temperature. The mechanism of this thermoregulation was investigated. Using a yopE::lacZ reporter fusion, lcrF-mediated thermal regulation was observed in Y. pestis and Escherichia coli. The lcrF gene was sequenced, the 30.8 kDa. LcrF protein identified and purified, and LcrF-dependent yopE-specific DNA binding activity was detected. A sequence similarity search revealed that LcrF exhibits 98% homology to VirF of Yersinia enterocolitica and significant homology to the carboxy termini of other members of the AraC family of transcription activators. During localization studies, a significant proportion of LcrF was found associated with the membrane fraction in E. coli. However, pulse-chase experiments indicated that this result is an artifact of fractionation. lcrF-mediated thermal induction of the yopE::lacZ reporter fusion remains intact in a Shigella flexneri virR mutant. The virR mutation is known to affect thermal induction of Shigellavirulence genes, which are also controlled by an activator in the AraC family. As a first step toward identifying the temperature-sensitive step in the regulation of yop expression, lcrF::lacZ transcriptional fusions were constructed and analyzed in Y. pestis and E. coli. The activity of the fusions was not affected by the native pCD1 virulence plasmid, an intact lcrF gene, or temperature. Thus, induction of lcrF transcription is not essential for temperature-dependent activation of yopE transcription. To confirm these results, attempts were made to identify both the native lcrF message in Y. pestis, and a lcrF-lacZ hybrid message in Y. pestis and E. coli. These attempts were unsuccessful. Examination of LcrF protein production revealed temperature-dependent expression in Y. pestis. Surprisingly, high-level T7 polymerase-directed transcription of the lcrF gene in Escherichia coli also resulted in temperature-dependent production of the LcrF protein. Pulse-chase experiments showed that the LcrF protein was stable at both 26 and 37°C, suggesting that translation rate or message degradation is thermally controlled. Comparison of the amount of LcrF protein produced per unit of message at 26 and 37°C in E. coli indicated that the efficiency of translation of lcrF message increased with temperature. mRNA secondary structure predictions suggest that the lcrF Shine-Dalgarno sequence is sequestered in a stem-loop. A model in which decreased stability of this stem-loop with increasing temperature leads to increased efficiency of translation initiation of lcrF message is presented.
    DOI
    10.13028/1znw-eh84
    Permanent Link to this Item
    http://hdl.handle.net/20.500.14038/32367
    Rights
    Copyright is held by the author, with all rights reserved.
    ae974a485f413a2113503eed53cd6c53
    10.13028/1znw-eh84
    Scopus Count
    Collections
    Morningside Graduate School of Biomedical Sciences Dissertations and Theses

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Lamar Soutter Library, UMass Chan Medical School | 55 Lake Avenue North | Worcester, MA 01655 USA
    Quick Guide | escholarship@umassmed.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.