• Login
    View Item 
    •   Home
    • UMass Chan Student Research and Publications
    • Morningside Graduate School of Biomedical Sciences
    • Morningside Graduate School of Biomedical Sciences Dissertations and Theses
    • View Item
    •   Home
    • UMass Chan Student Research and Publications
    • Morningside Graduate School of Biomedical Sciences
    • Morningside Graduate School of Biomedical Sciences Dissertations and Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of eScholarship@UMassChanCommunitiesPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsThis CollectionPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywords

    My Account

    LoginRegister

    Help

    AboutSubmission GuidelinesData Deposit PolicySearchingAccessibilityTerms of UseWebsite Migration FAQ

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Mechanisms Driving Human Adipose Tissue Thermogenesis in vivo and its Clinical Applications in Metabolic Health

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Researt_Dissertation_Final_Ver ...
    Size:
    6.480Mb
    Format:
    PDF
    Download
    Authors
    Solivan-Rivera, Javier
    Faculty Advisor
    Silvia Corvera
    Academic Program
    Translational Science
    UMass Chan Affiliations
    Program in Molecular medicine
    Document Type
    Doctoral Dissertation
    Publication Date
    2022-03-22
    Keywords
    Adipose Tissue
    Adipocytes
    Thermogenesis
    MAOA
    tissue engineering
    Bioinformatics
    Cell Biology
    Cellular and Molecular Physiology
    Developmental Biology
    
    Metadata
    Show full item record
    Abstract
    For many years, adipose tissue (AT) was thought to be a tissue primarily responsible for cushioning and insulating organs. However, significant advances in knowledge have shown that AT is necessary for maintaining an optimal metabolic balance through paracrine and endocrine mechanisms. Because AT dysfunction is related with illnesses such as obesity and diabetes, it is vital to understand the mechanisms behind these pathologies to restore metabolic health. Beige AT is a unique form of fat that generates heat through uncoupling protein 1 (UCP1), has a dense neurovascular network, and is associated with enhanced metabolic health. Hence, particular emphasis has been made on unraveling the processes behind thermogenic activation and maintenance, as increasing thermogenic activity offers considerable potential for treating metabolic disorders. Activation of beige AT is dependent on norepinephrine release from sympathetic neurons upon physiological cues such as cold exposure. Studies have revealed a major role of monoamine oxidase a (MAOA)-mediated norepinephrine clearance in the maintenance of thermogenic AT. However, major limitations are still present with regards to the mechanisms of neurotransmitter clearance and their role in thermogenic regulation. The initial objective of this thesis is to evaluate the effect of human white and thermogenic adipocytes on the formation of a neurovascular network in order to maintain thermogenesis and whether MAOA plays a direct role in thermogenic control. We demonstrate that implanted human thermogenic adipocytes generate a more vascularized and innervated AT than non-thermogenic adipocytes. Additional findings revealed that MAOA is expressed in human adipocytes and that inhibiting MAOA promotes thermogenesis. The second objective of this thesis is to determine if hAdipoGel (hAG) - a decellularized AT matrix – enhances mesenchymal stem cell (MSC) proliferation and differentiation, as well as human adipocyte engraftment in vivo. We show that MSC can proliferate in hAG and differentiate effectively into white and thermogenic adipocytes. Additionally, when white adipocytes are implanted with hAG, they differentiate into a fully functioning fat graft capable of integrating with the host. Understanding the thermogenic processes of human AT, in combination with the use of a suitable decellularized matrix, can aid in the development of therapeutic treatments that boost thermogenic activity and hence metabolic health.
    DOI
    10.13028/x3c9-d876
    Permanent Link to this Item
    http://hdl.handle.net/20.500.14038/32393
    Rights
    Copyright is held by the author, with all rights reserved.
    ae974a485f413a2113503eed53cd6c53
    10.13028/x3c9-d876
    Scopus Count
    Collections
    Morningside Graduate School of Biomedical Sciences Dissertations and Theses

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Lamar Soutter Library, UMass Chan Medical School | 55 Lake Avenue North | Worcester, MA 01655 USA
    Quick Guide | escholarship@umassmed.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.