• Login
    View Item 
    •   Home
    • UMass Chan Student Research and Publications
    • Morningside Graduate School of Biomedical Sciences
    • Morningside GSBS Scholarly Publications
    • View Item
    •   Home
    • UMass Chan Student Research and Publications
    • Morningside Graduate School of Biomedical Sciences
    • Morningside GSBS Scholarly Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of eScholarship@UMassChanCommunitiesPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsThis CollectionPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsProfilesView

    My Account

    LoginRegister

    Help

    AboutSubmission GuidelinesData Deposit PolicySearchingAccessibilityTerms of UseWebsite Migration FAQ

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Secondary structure of a KCNE cytoplasmic domain

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Authors
    Rocheleau, Jessica M.
    Gage, Steven D.
    Kobertz, William R.
    UMass Chan Affiliations
    Department of Biochemistry and Molecular Pharmacology
    Graduate School of Biomedical Sciences
    Document Type
    Journal Article
    Publication Date
    2006-11-30
    Keywords
    Amino Acid Sequence; Animals; Cytoplasm; Humans; KCNQ1 Potassium Channel; Mutagenesis, Site-Directed; Patch-Clamp Techniques; Potassium Channels, Voltage-Gated; *Protein Structure, Secondary; Protein Structure, Tertiary; Xenopus laevis
    Life Sciences
    Medicine and Health Sciences
    
    Metadata
    Show full item record
    Link to Full Text
    http://dx.doi.org/10.1085/jgp.200609657
    Abstract
    Type I transmembrane KCNE peptides contain a conserved C-terminal cytoplasmic domain that abuts the transmembrane segment. In KCNE1, this region is required for modulation of KCNQ1 K(+) channels to afford the slowly activating cardiac I(Ks) current. We utilized alanine/leucine scanning to determine whether this region possesses any secondary structure and to identify the KCNE1 residues that face the KCNQ1 channel complex. Helical periodicity analysis of the mutation-induced perturbations in voltage activation and deactivation kinetics of KCNQ1-KCNE1 complexes defined that the KCNE1 C terminus is alpha-helical when split in half at a conserved proline residue. This helical rendering assigns all known long QT mutations in the KCNE1 C-terminal domain as protein facing. The identification of a secondary structure within the KCNE1 C-terminal domain provides a structural scaffold to map protein-protein interactions with the pore-forming KCNQ1 subunit as well as the cytoplasmic regulatory proteins anchored to KCNQ1-KCNE complexes.
    Source
    J Gen Physiol. 2006 Dec;128(6):721-9. Link to article on publisher's site
    DOI
    10.1085/jgp.200609657
    Permanent Link to this Item
    http://hdl.handle.net/20.500.14038/32447
    PubMed ID
    17130521
    Related Resources
    Link to Article in PubMed
    ae974a485f413a2113503eed53cd6c53
    10.1085/jgp.200609657
    Scopus Count
    Collections
    Morningside GSBS Scholarly Publications

    entitlement

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Lamar Soutter Library, UMass Chan Medical School | 55 Lake Avenue North | Worcester, MA 01655 USA
    Quick Guide | escholarship@umassmed.edu
    Works found in eScholarship@UMassChan are protected by copyright unless otherwise indicated.
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.