Apoptosis associated with deregulated E2F activity is dependent on E2F1 and Atm/Nbs1/Chk2
Authors
Rogoff, Harry A.Pickering, Mary T.
Frame, Fiona M.
Debatis, Michelle E.
Sanchez, Yolanda
Jones, Stephen N.
Kowalik, Timothy F.
UMass Chan Affiliations
Department of Cell BiologyDepartment of Molecular Genetics and Microbiology
Program in Immunology and Virology
Graduate School of Biomedical Sciences
Document Type
Journal ArticlePublication Date
2004-03-17Keywords
Animals; Apoptosis; Cell Cycle Proteins; Cells, Cultured; *DNA-Binding Proteins; E2F Transcription Factors; E2F1 Transcription Factor; E2F2 Transcription Factor; Fibroblasts; Gene Expression Regulation; Humans; Mice; Mice, Transgenic; Nuclear Proteins; Oncogene Proteins, Viral; Protein-Serine-Threonine Kinases; Retinoblastoma Protein; Signal Transduction; Transcription Factors; Tumor Suppressor Protein p53; Tumor Suppressor ProteinsLife Sciences
Medicine and Health Sciences
Metadata
Show full item recordAbstract
The retinoblastoma protein (Rb)/E2F pathway links cellular proliferation control to apoptosis and is critical for normal development and cancer prevention. Here we define a transcription-mediated pathway in which deregulation of E2F1 by ectopic E2F expression or Rb inactivation by E7 of human papillomavirus type 16 signals apoptosis by inducing the expression of Chk2, a component of the DNA damage response. E2F1- and E7-mediated apoptosis are compromised in cells from patients with the related disorders ataxia telangiectasia and Nijmegen breakage syndrome lacking functional Atm and Nbs1 gene products, respectively. Both Atm and Nbs1 contribute to Chk2 activation and p53 phosphorylation following deregulation of normal Rb growth control. E2F2, a related E2F family member that does not induce apoptosis, also activates Atm, resulting in phosphorylation of p53. However, we found that the key commitment step in apoptosis induction is the ability of E2F1, and not E2F2, to upregulate Chk2 expression. Our results suggest that E2F1 plays a central role in signaling disturbances in the Rb growth control pathway and, by upregulation of Chk2, may sensitize cells to undergo apoptosis.Source
Mol Cell Biol. 2004 Apr;24(7):2968-77.
DOI
10.1128/MCB.24.7.2968-2977.2004Permanent Link to this Item
http://hdl.handle.net/20.500.14038/32451PubMed ID
15024084Related Resources
ae974a485f413a2113503eed53cd6c53
10.1128/MCB.24.7.2968-2977.2004
Scopus Count
Related items
Showing items related by title, author, creator and subject.
-
Dynamic Regulation at the Neuronal Plasma Membrane: Novel Endocytic Mechanisms Control Anesthetic-Activated Potassium Channels and Amphetamine-Sensitive Dopamine Transporters: A DissertationGabriel, Luke R. (2013-06-13)Endocytic trafficking dynamically regulates neuronal plasma membrane protein presentation and activity, and plays a central role in excitability and plasticity. Over the course of my dissertation research I investigated endocytic mechanisms regulating two neuronal membrane proteins: the anesthetic-activated potassium leak channel, KCNK3, as well as the psychostimulant-sensitive dopamine transporter (DAT). My results indicate that KCNK3 internalizes in response to Protein Kinase C (PKC) activation, using a novel pathway that requires the phosphoserine binding protein, 14-3-3β, and demonstrates for the first time regulated KCNK3 channel trafficking in neurons. Additionally, PKC-mediated KCNK3 trafficking requires a non-canonical endocytic motif, which is shared exclusively between KCNK3 and sodium-dependent neurotransmitter transporters, such as DAT. DAT trafficking studies in intact ex vivo adult striatal slices indicate that DAT endocytic trafficking has both dynamin-dependent and –independent components. Moreover, DAT segregates into two populations at the neuronal plasma membrane: trafficking-competent and -incompetent. Taken together, these results demonstrate that novel, non-classical endocytic mechanisms dynamically control the plasma membrane presentation of these two important neuronal proteins.
-
Selective interaction of JNK protein kinase isoforms with transcription factorsGupta, Shashi; Barrett, Tamera; Whitmarsh, Alan J.; Cavanagh, Julie; Sluss, Hayla Karen; Derijard, Benoit; Davis, Roger J. (1996-06-03)The JNK protein kinase is a member of the MAP kinase group that is activated in response to dual phosphorylation on threonine and tyrosine. Ten JNK isoforms were identified in human brain by molecular cloning. These protein kinases correspond to alternatively spliced isoforms derived from the JNK1, JNK2 and JNK3 genes. The protein kinase activity of these JNK isoforms was measured using the transcription factors ATF2, Elk-1 and members of the Jun family as substrates. Treatment of cells with interleukin-1 (IL-1) caused activation of the JNK isoforms. This activation was blocked by expression of the MAP kinase phosphatase MKP-1. Comparison of the binding activity of the JNK isoforms demonstrated that the JNK proteins differ in their interaction with ATF2, Elk-1 and Jun transcription factors. Individual members of the JNK group may therefore selectively target specific transcription factors in vivo.
-
Role of the Raf/mitogen-activated protein kinase pathway in p21ras desensitizationKlarlund, Jes K.; Cherniack, Andrew D.; McMahon, Martin; Czech, Michael P. (1996-07-12)Desensitization of p21(ras) after stimulation of cells by growth factors and phorbol 12-myristate 13-acetate (PMA) correlates with hyperphosphorylation of the guanine nucleotide exchange factor Son-of-sevenless (Sos) and its dissociation from the adaptor protein Grb2 (Cherniack, A., Klarlund, J. K., Conway, B. R., and Czech, M. P. (1995) J. Biol. Chem. 270, 1485-1488). To test the role of the Raf/mitogen-activated protein (MAP) kinase pathway, we utilized cells expressing a chimera composed of the catalytic domain of p74Raf-1 and the hormone binding domain of the estradiol receptor (DeltaRaf-1:ER). Estradiol markedly stimulated DeltaRaf-1:ER and the downstream MEK and MAP kinases in these cells as well as Sos phosphorylation. However, the dissociation of Grb2 from Sos observed in response to PMA was not apparent upon DeltaRaf-1:ER activation. Furthermore, stimulation of DeltaRaf-1:ER did not impair GTP loading of p21(ras) in response to platelet-derived growth factor or epidermal growth factor. We conclude that activation of the Raf/MAP kinase pathway alone in these cells is insufficient to cause disassembly of Sos from Grb2 or to interrupt the ability of Sos to catalyze activation of p21(ras).