Authors
Schonhoff, Christopher M.Daou, Marie-Claire
Jones, Stephen N.
Schiffer, Celia A.
Ross, Alonzo H.
UMass Chan Affiliations
Department of Cell BiologyDepartment of Biochemistry and Molecular Pharmacology
Graduate School of Biomedical Sciences
Document Type
Journal ArticlePublication Date
2002-11-13Keywords
Amino Acid Sequence; Binding Sites; Cysteine; Dithiothreitol; Enzyme-Linked Immunosorbent Assay; Glutathione; Glutathione Transferase; Humans; Molecular Sequence Data; Mutagenesis, Site-Directed; Mutation; Neoplasm Proteins; *Nuclear Proteins; Protein Binding; Protein Conformation; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-mdm2; Recombinant Fusion Proteins; Sequence Homology, Amino Acid; Triazenes; Tumor Suppressor Protein p53Life Sciences
Medicine and Health Sciences
Metadata
Show full item recordAbstract
It has become increasingly evident that nitric oxide exerts its effects, in part, by S-nitrosylation of cysteine residues. We tested in vitro whether nitric oxide may indirectly control p53 by S-nitrosylation and inactivation of the p53 negative regulator, Hdm2. Treatment of Hdm2 with a nitric oxide donor inhibits Hdm2-p53 binding, a critical step in Hdm2 regulation of p53. The presence of excess amounts of cysteine or dithiothreitol blocks this inhibition of binding. Moreover, nitric oxide inhibition of Hdm2-p53 binding was found to be reversible. Sulfhydryl sensitivity and reversibility are consistent with nitrosylation. Finally, we have identified a critical cysteine residue that nitric oxide modifies to disrupt Hdm2-p53 binding. This cysteine is proximal to the Hdm2-p53 binding interface and is conserved across species from zebrafish to humans. Mutation of this residue from a cysteine to an alanine does not interfere with binding but rather eliminates the sensitivity of Hdm2 to nitric oxide inactivation.Source
Biochemistry. 2002 Nov 19;41(46):13570-4.
DOI
10.1021/bi026262qPermanent Link to this Item
http://hdl.handle.net/20.500.14038/32515PubMed ID
12427017Related Resources
ae974a485f413a2113503eed53cd6c53
10.1021/bi026262q
Scopus Count
Related items
Showing items related by title, author, creator and subject.
-
Dynamic Regulation at the Neuronal Plasma Membrane: Novel Endocytic Mechanisms Control Anesthetic-Activated Potassium Channels and Amphetamine-Sensitive Dopamine Transporters: A DissertationGabriel, Luke R. (2013-06-13)Endocytic trafficking dynamically regulates neuronal plasma membrane protein presentation and activity, and plays a central role in excitability and plasticity. Over the course of my dissertation research I investigated endocytic mechanisms regulating two neuronal membrane proteins: the anesthetic-activated potassium leak channel, KCNK3, as well as the psychostimulant-sensitive dopamine transporter (DAT). My results indicate that KCNK3 internalizes in response to Protein Kinase C (PKC) activation, using a novel pathway that requires the phosphoserine binding protein, 14-3-3β, and demonstrates for the first time regulated KCNK3 channel trafficking in neurons. Additionally, PKC-mediated KCNK3 trafficking requires a non-canonical endocytic motif, which is shared exclusively between KCNK3 and sodium-dependent neurotransmitter transporters, such as DAT. DAT trafficking studies in intact ex vivo adult striatal slices indicate that DAT endocytic trafficking has both dynamin-dependent and –independent components. Moreover, DAT segregates into two populations at the neuronal plasma membrane: trafficking-competent and -incompetent. Taken together, these results demonstrate that novel, non-classical endocytic mechanisms dynamically control the plasma membrane presentation of these two important neuronal proteins.
-
Selective interaction of JNK protein kinase isoforms with transcription factorsGupta, Shashi; Barrett, Tamera; Whitmarsh, Alan J.; Cavanagh, Julie; Sluss, Hayla Karen; Derijard, Benoit; Davis, Roger J. (1996-06-03)The JNK protein kinase is a member of the MAP kinase group that is activated in response to dual phosphorylation on threonine and tyrosine. Ten JNK isoforms were identified in human brain by molecular cloning. These protein kinases correspond to alternatively spliced isoforms derived from the JNK1, JNK2 and JNK3 genes. The protein kinase activity of these JNK isoforms was measured using the transcription factors ATF2, Elk-1 and members of the Jun family as substrates. Treatment of cells with interleukin-1 (IL-1) caused activation of the JNK isoforms. This activation was blocked by expression of the MAP kinase phosphatase MKP-1. Comparison of the binding activity of the JNK isoforms demonstrated that the JNK proteins differ in their interaction with ATF2, Elk-1 and Jun transcription factors. Individual members of the JNK group may therefore selectively target specific transcription factors in vivo.
-
Role of the Raf/mitogen-activated protein kinase pathway in p21ras desensitizationKlarlund, Jes K.; Cherniack, Andrew D.; McMahon, Martin; Czech, Michael P. (1996-07-12)Desensitization of p21(ras) after stimulation of cells by growth factors and phorbol 12-myristate 13-acetate (PMA) correlates with hyperphosphorylation of the guanine nucleotide exchange factor Son-of-sevenless (Sos) and its dissociation from the adaptor protein Grb2 (Cherniack, A., Klarlund, J. K., Conway, B. R., and Czech, M. P. (1995) J. Biol. Chem. 270, 1485-1488). To test the role of the Raf/mitogen-activated protein (MAP) kinase pathway, we utilized cells expressing a chimera composed of the catalytic domain of p74Raf-1 and the hormone binding domain of the estradiol receptor (DeltaRaf-1:ER). Estradiol markedly stimulated DeltaRaf-1:ER and the downstream MEK and MAP kinases in these cells as well as Sos phosphorylation. However, the dissociation of Grb2 from Sos observed in response to PMA was not apparent upon DeltaRaf-1:ER activation. Furthermore, stimulation of DeltaRaf-1:ER did not impair GTP loading of p21(ras) in response to platelet-derived growth factor or epidermal growth factor. We conclude that activation of the Raf/MAP kinase pathway alone in these cells is insufficient to cause disassembly of Sos from Grb2 or to interrupt the ability of Sos to catalyze activation of p21(ras).