• Login
    View Item 
    •   Home
    • UMass Chan Student Research and Publications
    • Morningside Graduate School of Biomedical Sciences
    • Morningside Graduate School of Biomedical Sciences Scholarly Publications
    • View Item
    •   Home
    • UMass Chan Student Research and Publications
    • Morningside Graduate School of Biomedical Sciences
    • Morningside Graduate School of Biomedical Sciences Scholarly Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of eScholarship@UMassChanCommunitiesPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsThis CollectionPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywords

    My Account

    LoginRegister

    Help

    AboutSubmission GuidelinesData Deposit PolicySearchingAccessibilityTerms of UseWebsite Migration FAQ

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Asymmetry in the assembly of the RNAi enzyme complex

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Publisher version
    View Source
    Access full-text PDFOpen Access
    View Source
    Check access options
    Check access options
    Authors
    Schwarz, Dianne S.
    Hutvagner, Gyorgy
    Du, Tingting
    Xu, Zuoshang
    Aronin, Neil
    Zamore, Phillip D.
    UMass Chan Affiliations
    Department of Medicine, Division of Endocrinology and Metabolism
    Department of Biochemistry and Molecular Pharmacology
    Graduate School of Biomedical Sciences
    Document Type
    Journal Article
    Publication Date
    2003-10-22
    Keywords
    Adenosine Diphosphate; Adenosine Triphosphate; Animals; Base Pair Mismatch; Base Pairing; Base Sequence; Drosophila melanogaster; Hydrogen Bonding; Kinetics; MicroRNAs; Models, Biological; Phosphorylation; RNA Helicases; *RNA Interference; RNA, Antisense; RNA, Double-Stranded; RNA, Messenger; RNA, Small Interfering; RNA, Untranslated; RNA-Induced Silencing Complex; Superoxide Dismutase
    Life Sciences
    Medicine and Health Sciences
    
    Metadata
    Show full item record
    Link to Full Text
    https://doi.org/10.1016/S0092-8674(03)00759-1
    Abstract
    A key step in RNA interference (RNAi) is assembly of the RISC, the protein-siRNA complex that mediates target RNA cleavage. Here, we show that the two strands of an siRNA duplex are not equally eligible for assembly into RISC. Rather, both the absolute and relative stabilities of the base pairs at the 5' ends of the two siRNA strands determine the degree to which each strand participates in the RNAi pathway. siRNA duplexes can be functionally asymmetric, with only one of the two strands able to trigger RNAi. Asymmetry is the hallmark of a related class of small, single-stranded, noncoding RNAs, microRNAs (miRNAs). We suggest that single-stranded miRNAs are initially generated as siRNA-like duplexes whose structures predestine one strand to enter the RISC and the other strand to be destroyed. Thus, the common step of RISC assembly is an unexpected source of asymmetry for both siRNA function and miRNA biogenesis.
    Source

    Cell. 2003 Oct 17;115(2):199-208.

    DOI
    10.1016/S0092-8674(03)00759-1
    Permanent Link to this Item
    http://hdl.handle.net/20.500.14038/32517
    PubMed ID
    14567917
    Related Resources

    Link to Article in PubMed

    ae974a485f413a2113503eed53cd6c53
    10.1016/S0092-8674(03)00759-1
    Scopus Count
    Collections
    Morningside Graduate School of Biomedical Sciences Scholarly Publications

    entitlement

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Lamar Soutter Library, UMass Chan Medical School | 55 Lake Avenue North | Worcester, MA 01655 USA
    Quick Guide | escholarship@umassmed.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.