• Login
    View Item 
    •   Home
    • UMass Chan Student Research and Publications
    • Morningside Graduate School of Biomedical Sciences
    • Morningside Graduate School of Biomedical Sciences Scholarly Publications
    • View Item
    •   Home
    • UMass Chan Student Research and Publications
    • Morningside Graduate School of Biomedical Sciences
    • Morningside Graduate School of Biomedical Sciences Scholarly Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of eScholarship@UMassChanCommunitiesPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsThis CollectionPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywords

    My Account

    LoginRegister

    Help

    AboutSubmission GuidelinesData Deposit PolicySearchingAccessibilityTerms of UseWebsite Migration FAQ

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Nicotinamide adenine dinucleotide (NAD) and its metabolites inhibit T lymphocyte proliferation: role of cell surface NAD glycohydrolase and pyrophosphatase activities

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Authors
    Bortell, Rita
    Moss, Joel
    McKenna, Robert C.
    Rigby, Mark R.
    Niedzwiecki, Dena
    Stevens, Linda A.
    Patton, Walter A.
    Mordes, John P.
    Greiner, Dale L.
    Rossini, Aldo A.
    UMass Chan Affiliations
    Department of Medicine, Division of Endocrinology and Metabolism
    Department of Medicine, Diabetes Division
    Graduate School of Biomedical Sciences
    Document Type
    Journal Article
    Publication Date
    2001-08-08
    Keywords
    *ADP Ribose Transferases; Adenosine; Adenosine Diphosphate; Adenosine Diphosphate Ribose; Adenosine Monophosphate; Animals; Antigens, Differentiation, T-Lymphocyte; Cell Membrane; Cells, Cultured; Cholera Toxin; Female; Histocompatibility Antigens; Immunosuppressive Agents; *Lymphocyte Activation; Male; *Membrane Glycoproteins; Mitogens; NAD; NAD+ Nucleosidase; Pertussis Toxin; Phosphatidylinositol Diacylglycerol-Lyase; Phosphoinositide Phospholipase C; Phosphorus Radioisotopes; Poly(ADP-ribose) Polymerases; Pyrophosphatases; Rats; Rats, Inbred BB; Rats, Inbred WF; T-Lymphocytes; Type C Phospholipases; Virulence Factors, Bordetella
    Life Sciences
    Medicine and Health Sciences
    
    Metadata
    Show full item record
    Link to Full Text
    https://doi.org/10.4049/jimmunol.167.4.2049
    Abstract
    The presence of NAD-metabolizing enzymes (e.g., ADP-ribosyltransferase (ART)2) on the surface of immune cells suggests a potential immunomodulatory activity for ecto-NAD or its metabolites at sites of inflammation and cell lysis where extracellular levels of NAD may be high. In vitro, NAD inhibits mitogen-stimulated rat T cell proliferation. To investigate the mechanism of inhibition, the effects of NAD and its metabolites on T cell proliferation were studied using ART2a+ and ART2b+ rat T cells. NAD and ADP-ribose, but not nicotinamide, inhibited proliferation of mitogen-activated T cells independent of ART2 allele-specific expression. Inhibition by P2 purinergic receptor agonists was comparable to that induced by NAD and ADP-ribose; these compounds were more potent than P1 agonists. Analysis of the NAD-metabolizing activity of intact rat T cells demonstrated that ADP-ribose was the predominant metabolite, consistent with the presence of cell surface NAD glycohydrolase (NADase) activities. Treatment of T cells with phosphatidylinositol-specific phospholipase C removed much of the NADase activity, consistent with at least one NADase having a GPI anchor; ART2- T cell subsets contained NADase activity that was not releasable by phosphatidylinositol-specific phospholipase C treatment. Formation of AMP from NAD and ADP-ribose also occurred, a result of cell surface pyrophosphatase activity. Because AMP and its metabolite, adenosine, were less inhibitory to rat T cell proliferation than was NAD or ADP-ribose, pyrophosphatases may serve a regulatory role in modifying the inhibitory effect of ecto-NAD on T cell activation. These data suggest that T cells express multiple NAD and adenine nucleotide-metabolizing activities that together modulate immune function.
    Source

    J Immunol. 2001 Aug 15;167(4):2049-59.

    DOI
    10.4049/jimmunol.167.4.2049
    Permanent Link to this Item
    http://hdl.handle.net/20.500.14038/32545
    PubMed ID
    11489987
    Related Resources

    Link to article in PubMed

    ae974a485f413a2113503eed53cd6c53
    10.4049/jimmunol.167.4.2049
    Scopus Count
    Collections
    Morningside Graduate School of Biomedical Sciences Scholarly Publications

    entitlement

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Lamar Soutter Library, UMass Chan Medical School | 55 Lake Avenue North | Worcester, MA 01655 USA
    Quick Guide | escholarship@umassmed.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.