Ubiquitinated proteins including uH2A on the human and mouse inactive X chromosome: enrichment in gene rich bands
Student Authors
Christine ClemsonUMass Chan Affiliations
Department of Cell BiologyDocument Type
Journal ArticlePublication Date
2004-12-24Keywords
Animals; Antibodies, Monoclonal; Cell Line; Chromosomes, Human, X; *Dosage Compensation, Genetic; Down-Regulation; Gene Expression; Histones; Humans; Mice; Mitosis; RNA, Untranslated; Sex Chromatin; Ubiquitins; X ChromosomeCell Biology
Life Sciences
Medicine and Health Sciences
Metadata
Show full item recordAbstract
The inactive X chromosome (Xi) forms a heterochromatic structure in the nucleus that is known to have several modifications to specific histones involving acetylation or methylation. Using three different antibodies in four different cell lines, we demonstrate that the Xi in human and mouse cells is highly enriched in ubiquitinated protein(s), much of which is polyubiquitinated. This ubiquitination appears specific for the Xi as it was not observed for centromeres or other regions of heterochromatin. Results using an antibody specific to ubiquitinated H2A provide a clear link between H2A ubiquitination and gene repression, as visualized across an entire inactive chromosome. Interestingly, the ubiquitination of the chromosome persists into mitosis and can be seen in a reproducible banded pattern. This pattern matches that of Xist RNA which forms bands as it detaches from the mitotic X chromosome. Both ubiquitination and Xist RNA appear enriched in gene dense regions and depleted in gene poor bands, but do not correlate with L1 LINE elements which have been suggested as key to X-inactivation. These results provide evidence that ubiquitination along with Xist RNA plays an important role in the formation of facultative heterochromatin during X-inactivation.Source
Chromosoma. 2004 Dec;113(6):324-35. Epub 2004 Nov 20. Link to article on publisher's siteDOI
10.1007/s00412-004-0325-1Permanent Link to this Item
http://hdl.handle.net/20.500.14038/32569PubMed ID
15616869Related Resources
Link to Article in PubMedae974a485f413a2113503eed53cd6c53
10.1007/s00412-004-0325-1