• Login
    View Item 
    •   Home
    • UMass Chan Student Research and Publications
    • Morningside Graduate School of Biomedical Sciences
    • Morningside Graduate School of Biomedical Sciences Scholarly Publications
    • View Item
    •   Home
    • UMass Chan Student Research and Publications
    • Morningside Graduate School of Biomedical Sciences
    • Morningside Graduate School of Biomedical Sciences Scholarly Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of eScholarship@UMassChanCommunitiesPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsThis CollectionPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywords

    My Account

    LoginRegister

    Help

    AboutSubmission GuidelinesData Deposit PolicySearchingAccessibilityTerms of UseWebsite Migration FAQ

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Phosphorylation of NUMA occurs during nuclear breakdown and not mitotic spindle assembly

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Authors
    Sparks, Cynthia A.
    Fey, Edward G.
    Vidair, Charles A.
    Doxsey, Stephen J.
    UMass Chan Affiliations
    Program in Molecular Medicine
    Department of Cell Biology
    Graduate School of Biomedical Sciences
    Document Type
    Journal Article
    Publication Date
    1995-11-01
    Keywords
    Animals; CHO Cells; Cell Nucleus; Cricetinae; Fluorescent Antibody Technique; G1 Phase; Microtubules; Mitotic Spindle Apparatus; Nuclear Proteins; Phosphorylation
    Life Sciences
    Medicine and Health Sciences
    
    Metadata
    Show full item record
    Link to Full Text
    http://jcs.biologists.org/cgi/content/abstract/108/11/3389
    Abstract
    NuMA, the nuclear mitotic apparatus protein, is a component of the nuclear matrix at interphase that redistributes to the spindle poles at mitosis. While the function of NuMA is not known, it has been implicated in spindle organization during mitosis and nuclear reformation. Phosphorylation is thought to play a regulatory role in NuMA function. In this study, NuMA phosphorylation was examined through the cell cycle using highly synchronized cells. In intact cells labeled with 32P-orthophosphate, NuMA appeared as a 250 kDa phosphoprotein in interphase that shifted to a higher apparent molecular mass in mitosis. The shift was due to phosphorylation as shown by reduction of the shifted band to interphase mobility by phosphatase treatment. This phosphorylation event occurred roughly at the G2/M transition at the time of NuMA's release from the nucleus and its redistribution to the mitotic spindle. However, mitotic phosphorylation did not require spindle formation since the phosphorylated species was detected in nocodazole-treated cells lacking microtubule spindles. Dephosphorylation of NuMA occurred in two distinct steps, after lamin B assembled into the nuclear lamina, in early G1 and at the end of G1. Based on the timing of the phosphorylation and dephosphorylation observed in this study, we propose that they may play a role in nuclear events such as nuclear organization, transcription, or initiation of DNA replication at G1/S.
    Source

    J Cell Sci. 1995 Nov;108 ( Pt 11):3389-96.

    Permanent Link to this Item
    http://hdl.handle.net/20.500.14038/32583
    PubMed ID
    8586651
    Related Resources

    Link to Article in PubMed

    Collections
    Morningside Graduate School of Biomedical Sciences Scholarly Publications

    entitlement

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Lamar Soutter Library, UMass Chan Medical School | 55 Lake Avenue North | Worcester, MA 01655 USA
    Quick Guide | escholarship@umassmed.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.