Temporal and spatial parameters of skeletal gene expression: targeting RUNX factors and their coregulatory proteins to subnuclear domains
Authors
Stein, Gary S.Lian, Jane B.
Stein, Janet L.
Van Wijnen, Andre J.
Choi, Je-Yong
Pratap, Jitesh
Zaidi, Sayyed K.
Document Type
Journal ArticlePublication Date
2003-09-04Keywords
Animals; Calcification, Physiologic; Core Binding Factor Alpha 1 Subunit; Core Binding Factor alpha Subunits; Humans; Mice; *Neoplasm Proteins; Nuclear Matrix; Nuclear Matrix-Associated Proteins; *Osteogenesis; *Protein Structure, Tertiary; Time Factors; Transcription Factors; *Transcription, GeneticLife Sciences
Medicine and Health Sciences
Metadata
Show full item recordAbstract
Key components of the basal transcription machinery and several tissue-specific transcription factor complexes are functionally compartmentalized as specialized subnuclear domains. We have identified a unique 31-38 amino acid targeting signal (NMTS) that directs the Runx (Cbfa/AML) transcription factors to distinct nuclear matrix-(NM) associated sites within the nucleus that support gene expression. Our determination of the NMTS crystal structure, yeast 2 hybrid screens to identify NM interacting proteins, and in situ colocalization studies with Runx interacting factors (YAP, Smad, TLE) suggest that localization of Runx transcription factors at intranuclear sites facilitates the assembly and activity of regulatory complexes that mediate activation and suppression of target genes. Mice homozygous for the deletion of the intranuclear Runx2 targeting signal in a homologous recombination (Runx2 deltaC) do not form bone due to maturational arrest of osteoblasts, demonstrating the importance of fidelity of subnuclear localization for tissue-differentiating activity. These results provide evidence that Runx2 subnuclear targeting and the associated regulatory functions are essential for a spatiotemporal placement that facilitates activation of Runx-dependent genes involved in tissue differentiation during embryonic development.Source
Connect Tissue Res. 2003;44 Suppl 1:149-53.
DOI
10.1080/03008900390152241Permanent Link to this Item
http://hdl.handle.net/20.500.14038/32603PubMed ID
12952189Related Resources
ae974a485f413a2113503eed53cd6c53
10.1080/03008900390152241
Scopus Count
Related items
Showing items related by title, author, creator and subject.
-
The role of TNF-receptor family members and other TRAF-dependent receptors in bone resorptionGravallese, Ellen M.; Galson, Deborah L.; Goldring, Steven R.; Auron, Philip E. (2001-02-15)The contribution of osteoclasts to the process of bone loss in inflammatory arthritis has recently been demonstrated. Studies in osteoclast biology have led to the identification of factors responsible for the differentiation and activation of osteoclasts, the most important of which is the receptor activator of NF-kappa B ligand/osteoclast differentiation factor (RANKL/ODF), a tumor necrosis factor (TNF)-like protein. The RANKL/ODF receptor, receptor activator of NF-kappa B (RANK), is a TNF-receptor family member present on both osteoclast precursors and mature osteoclasts. Like other TNF-family receptors and the IL-1 receptor, RANK mediates its signal transduction via TNF receptor-associated factor (TRAF) proteins, suggesting that the signaling pathways activated by RANK and other inflammatory cytokines involved in osteoclast differentiation and activation are interconnected.
-
Novel functional interactions between Trk kinase and p75 neurotrophin receptor in neuroblastoma cellsLachyankar, Mahesh B.; Condon, Peter J.; Daou, Marie-Claire; De, Asit K.; Levine, John B.; Obermeier, Axel; Ross, Alonzo H. (2002-12-28)To understand the functional interactions between the TrkA and p75 nerve growth factor (NGF) receptors, we stably transfected LAN5 neuroblastoma cells with an expression vector for ET-R, a chimeric receptor with the extracellular domain of the epidermal growth factor receptor (EGFR), and the TrkA transmembrane and intracellular domains. EGF activated the ET-R kinase and induced partial differentiation. NGF, which can bind to endogenous p75, did not induce differentiation but enhanced the EGF-induced response, leading to differentiation of almost all cells. A mutated NGF, 3T-NGF, that binds to TrkA but not to p75 did not synergize with EGF. Enhancement of EGF-induced differentiation required at least nanomolar concentrations of NGF, consistent with the low-affinity p75 binding site. EGF may induce a limited number of neuronal cells because it also enhanced apoptosis. Both NGF and a caspase inhibitor reduced apoptosis and, thereby, enhanced differentiation. NGF seems to enhance survival through the phosphatidylinositol-3 kinase (PI3K) pathway. Consistent with this hypothesis, Akt, a downstream effector of the PI3K pathway, was hyperphosphorylated in the presence of EGF+NGF. These results demonstrate that TrkA kinase initiates differentiation, and p75 enhances differentiation by rescuing differentiating cells from apoptosis via the PI3K pathway. Even though both EGF and NGF are required for differentiation of LAN5/ET-R cells, only NGF is required for survival of the differentiated cells. In the absence of NGF, the cells die by an apoptotic mechanism, involving caspase-3. An anti-p75 antibody blocked the survival effect of NGF. Brain-derived neurotrophic factor also enhanced cell survival, indicating that in differentiated cells, NGF acts through the p75 receptor to prevent apoptosis.
-
Subcellular partitioning of transcription factors during osteoblast differentiation: developmental association of the AML/CBF alpha/PEBP2 alpha-related transcription factor-NMP-2 with the nuclear matrixLindenmuth, Danielle M.; Van Wijnen, Andre J.; Hiebert, Scott W.; Stein, Janet L.; Lian, Jane B.; Stein, Gary S. (1997-07-01)The subnuclear location of transcription factors may functionally contribute to the regulation of gene expression. Several classes of gene regulators associate with the nuclear matrix in a cell type, cell growth, or cell cycle related-manner. To understand control of nuclear matrix-transcription factor interactions during tissue development, we systematically analyzed the subnuclear partitioning of a panel of transcription factors (including NMP-1/YY-1, NMP-2/AML, AP-1, and SP-1) during osteoblast differentiation using biochemical fractionation and gel shift analyses. We show that nuclear matrix association of the tissue-specific AML transcription factor NMP-2, but not the ubiquitous transcription factor YY1, is developmentally upregulated during osteoblast differentiation. Moreover, we show that there are multiple AML isoforms in mature osteoblasts, consistent with the multiplicity of AML factors that are derived from different genes and alternatively spliced cDNAs. These AML isoforms include proteins derived from the AML-3 gene and partition between distinct subcellular compartments. We conclude that the selective partitioning of the YY1 and AML transcription factors with the nuclear matrix involves a discriminatory mechanism that targets different classes and specific isoforms of gene regulatory factors to the nuclear matrix at distinct developmental stages. Our results are consistent with a role for the nuclear matrix in regulating the expression of bone-tissue specific genes during development of the mature osteocytic phenotype.