We are upgrading the repository! A content freeze is in effect until December 11, 2024. New submissions or changes to existing items will not be allowed during this period. All content already published will remain publicly available for searching and downloading. Updates will be posted in the Website Upgrade 2024 FAQ in the sidebar Help menu. Reach out to escholarship@umassmed.edu with any questions.
Identification of ATF-3, caveolin-1, DLC-1, and NM23-H2 as putative antitumorigenic, progesterone-regulated genes for ovarian cancer cells by gene profiling
Authors
Syed, ViqarMukherjee, Kasturi
Lyons-Weiler, James
Lau, Kin-Mang
Mashima, Tetsuo
Tsuruo, Takashi
Ho, Shuk-Mei
UMass Chan Affiliations
Department of Biochemistry and Molecular PharmacologyDepartment of Surgery
Morningside Graduate School of Biomedical Sciences
Document Type
Journal ArticlePublication Date
2005-01-28
Metadata
Show full item recordAbstract
Although progesterone (P4) has been implicated to offer protection against ovarian cancer (OCa), little is known of its mechanism of action. The goal of this study was to identify P4-regulated genes that have anti-OCa action. Three immortalized nontumorigenic human ovarian surface epithelial (HOSE) cell lines and three OCa (OVCA) cell lines were subjected to 5 days of P4 treatment. Transcriptional profiling with a cDNA microarray containing approximately 2400 known genes was used to identify genes (1) whose expression was consistently downregulated in OVCA cell lines compared to HOSE cell lines, and (2) whose expression was restored in OCa cell lines by P4 treatment. From the candidates selected, activating transcription factor-3 (ATF-3), caveolin-1, deleted in liver cancer-1 (DLC-1), and nonmetastatic clone 23 (NM23-H2) were chosen for post hoc functional studies based on their previously reported action as tumor suppressors or apoptosis inducers. Semiquantitative RT-PCR analyses confirmed loss of or reduced transcription of these genes in OVCA cells when compared to HOSE cells and their upregulation following P4 treatment. Hormonal specificity was demonstrated by blockade experiments with a progestin antagonist RU 38486. Ectopic expression of caveolin-1, DLC-1, and NM23-H2 caused growth inhibition in OVCA cell cultures, but not in HOSE cell cultures, while forced expression of ATF-3 suppressed growth in both. Overexpression of AFT-3 also enhanced caspase-3 activity in both HOSE and OVCA cells, whereas ectopic expression of caveolin-1 and DLC-1 only activated this enzyme in OCa cells. In contrast, NM23-H2 overexpression was ineffective in activating caspase-3. Overexpression of any of the four genes in OCa cells reduced soft-agar colony formation and cell invasiveness. Taken together, we have identified four new P4-regulated, antitumor genes for OCa. However, their modes of action differ significantly; ATF-3 primarily functions as an apoptosis inducer, NM23-H2 as a suppressor of cell motility, and caveolin-1 and DLC-1 exhibiting features of classical tumor suppressors. To the best of our knowledge, except for NM23-H2, this is the first report linking P4 to the regulation of these tumor suppressor/proapoptotic genes, which could serve as future therapeutic targets.Source
Oncogene. 2005 Mar 3;24(10):1774-87. Link to article on publisher's siteDOI
10.1038/sj.onc.1207991Permanent Link to this Item
http://hdl.handle.net/20.500.14038/32657PubMed ID
15674352Related Resources
Link to Article in PubMedae974a485f413a2113503eed53cd6c53
10.1038/sj.onc.1207991