Structural and physiologic determinants of human erythrocyte sugar transport regulation by adenosine triphosphate
UMass Chan Affiliations
Department of Molecular Genetics and MicrobiologyDepartment of Biochemistry and Molecular Pharmacology
Graduate School of Biomedical Sciences
Document Type
Journal ArticlePublication Date
1998-09-02Keywords
Adenosine Triphosphate; Amino Acid Sequence; Binding Sites; Biological Transport, Active; Blood Glucose; Erythrocytes; Glucose Transporter Type 1; Glycolysis; Humans; Hydrogen-Ion Concentration; Intracellular Fluid; Monosaccharide Transport Proteins; Peptide Fragments; Peptide Mapping; Structure-Activity RelationshipLife Sciences
Medicine and Health Sciences
Metadata
Show full item recordAbstract
Human erythrocyte sugar transport is mediated by the integral membrane protein GLUT1 and is regulated by cytosolic ATP [Carruthers, A., and Helgerson, A. L. (1989) Biochemistry 28, 8337-8346]. This study asks the following questions. (1) Where is the GLUT1 ATP binding site? (2) Is ATP-GLUT1 interaction sufficient for sugar transport regulation? (3) Is ATP modulation of transport subject to metabolic control? GLUT1 residues 301-364 were identified as one element of the GLUT1 ATP binding domain by peptide mapping and N-terminal sequence analysis of proteolytic fragments of azidoATP-photolabeled GLUT1. Nucleotide binding and sugar transport experiments undertaken with dimeric and tetrameric forms of GLUT1 indicate that only tetrameric GLUT1 binds and is subject to modulation by ATP. Reconstitution experiments indicate that nucleotide and tetrameric GLUT1 are sufficient for ATP modulation of sugar transport. Feedback control of GLUT1 regulation by ATP was investigated by measuring sugar uptake into erythrocyte ghosts containing or lacking ATP and glycolytic intermediates. Only AMP and ADP modulate ATP regulation of transport. Reduced cytosolic pH inhibits ATP modulation of GLUT1-mediated 3OMG uptake and increases Kd(app) for ATP interaction with GLUT1. We conclude that tetrameric but not dimeric GLUT1 is subject to direct regulation by cytosolic ATP and that this regulation is antagonized by intracellular AMP and acidification.Source
Biochemistry. 1998 Sep 1;37(35):12221-32. Link to article on publisher's siteDOI
10.1021/bi980585yPermanent Link to this Item
http://hdl.handle.net/20.500.14038/32745PubMed ID
9724536Related Resources
Link to article in PubMedae974a485f413a2113503eed53cd6c53
10.1021/bi980585y