• Login
    View Item 
    •   Home
    • UMass Chan Student Research and Publications
    • Morningside Graduate School of Biomedical Sciences
    • Morningside Graduate School of Biomedical Sciences Scholarly Publications
    • View Item
    •   Home
    • UMass Chan Student Research and Publications
    • Morningside Graduate School of Biomedical Sciences
    • Morningside Graduate School of Biomedical Sciences Scholarly Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of eScholarship@UMassChanCommunitiesPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsThis CollectionPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywords

    My Account

    LoginRegister

    Help

    AboutSubmission GuidelinesData Deposit PolicySearchingAccessibilityTerms of UseWebsite Migration FAQ

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Immune mediated and inherited defences against flaviviruses

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Publisher version
    View Source
    Access full-text PDFOpen Access
    View Source
    Check access options
    Check access options
    Authors
    Brinton, Margo A.
    Kurane, Ichiro
    Mathew, Anuja
    Zeng, Lingling
    Shi, Pei Yong
    Rothman, Alan L.
    Ennis, Francis A.
    UMass Chan Affiliations
    Center for Infectious Disease and Vaccine Research
    Department of Medicine, Division of Infectious Diseases and Immunology
    Graduate School of Biomedical Sciences
    Document Type
    Journal Article
    Publication Date
    1998-09-19
    Keywords
    Animals; Epitope Mapping; Epitopes, B-Lymphocyte; Epitopes, T-Lymphocyte; Flavivirus; Flavivirus Infections; Humans; Immunity, Natural; Mice; Viral Proteins
    Life Sciences
    Medicine and Health Sciences
    
    Metadata
    Show full item record
    Link to Full Text
    https://doi.org/10.1016/S0928-0197(98)00039-7
    Abstract
    BACKGROUND: Flavivirus infection elicits an abundant immune response in the host which is directed against a number of the viral proteins. Resistance to flavivirus-induced disease can also be controlled via a non-immune mechanism involving the product of a naturally occurring murine gene, Flv. OBJECTIVES: To review studies that have reported the mapping of epitopes on flavivirus proteins that elicit T- or B-cell immune responses in mice or humans and to discuss a possible mechanism for flavivirus-specific genetic resistance. STUDY DESIGN: Purified viral proteins and synthetic peptides were used to map B-cell epitopes. Purified proteins, vaccinia-expressed viral protein fragments and synthetic peptides were used to map T-cell epitopes. Congenic-resistant, C3H/RV and congenic susceptible, C3H/He mice and cell cultures were used to study the mechanism of genetic resistance to flavivirus infection. RESULTS: T- and B-cell epitopes have been mapped to the E, NS1 and NS3 proteins of several flaviviruses. Immune responses to the C, PreM, NS2a, NS4a, and NS5 proteins have also been documented. Data suggest that the Flv gene product acts intracellularly to suppress the synthesis of viral genomic RNA. CONCLUSIONS: Although flavivirus infection elicits an abundant immune response, this response is not always rapid enough to protect the host from developing encephalitis. During secondary infections both the humoral and cellular flavivirus-specific responses can confer protection. Dengue haemorrhagic fever (DHF) and dengue shock syndrome (DSS) appear to be caused by an overly vigorous immune response. In genetically resistant animals reduced production of virus results in a slower spread of the infection, which in turn allows time for the immune response to develop and to clear the infection before disease symptoms appear.
    Source

    Clin Diagn Virol. 1998 Jul 15;10(2-3):129-39.

    DOI
    10.1016/S0928-0197(98)00039-7
    Permanent Link to this Item
    http://hdl.handle.net/20.500.14038/32746
    PubMed ID
    9741638
    Related Resources

    Link to article in PubMed

    ae974a485f413a2113503eed53cd6c53
    10.1016/S0928-0197(98)00039-7
    Scopus Count
    Collections
    Morningside Graduate School of Biomedical Sciences Scholarly Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Lamar Soutter Library, UMass Chan Medical School | 55 Lake Avenue North | Worcester, MA 01655 USA
    Quick Guide | escholarship@umassmed.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.