We are upgrading the repository! A content freeze is in effect until December 11, 2024. New submissions or changes to existing items will not be allowed during this period. All content already published will remain publicly available for searching and downloading. Updates will be posted in the Website Upgrade 2024 FAQ in the sidebar Help menu. Reach out to escholarship@umassmed.edu with any questions.
3,4-Dichloropropionanilide (DCPA) inhibits T-cell activation by altering the intracellular calcium concentration following store depletion
UMass Chan Affiliations
Department of MicrobiologyMorningside Graduate School of Biomedical Sciences
Document Type
Journal ArticlePublication Date
2008-02-19
Metadata
Show full item recordAbstract
Stimulation of T cells through the T-cell receptor results in the activation of a series of signaling pathways that leads to the secretion of interleukin (IL)-2 and cell proliferation. Influx of calcium (Ca(2+)) from the extracellular environment, following internal Ca(2+) store depletion, provides the elevated and sustained intracellular calcium concentration ([Ca(2+)](i)) critical for optimal T-cell activation. Our laboratory has documented that exposure to the herbicide 3,4-dichloropropionanilide (DCPA) inhibits intracellular signaling events that have one or more Ca(2+) dependent steps. Herein we report that DCPA attenuates the normal elevated and sustained [Ca(2+)](i) that follows internal store depletion in the human leukemic Jurkat T cell line and primary mouse T cells. DCPA did not alter the depletion of internal Ca(2+) stores when stimulated by anti-CD3 or thapsigargin demonstrating that early inositol 1,4,5-triphosphate-mediated signaling and depletion of Ca(2+) stores were unaffected. 2-Aminoethyldiphenol borate (2-APB) is known to alter the store-operated Ca(2+) (SOC) influx that follows Ca(2+) store depletion. Exposure of Jurkat cells to either DCPA or 50 microM 2-APB attenuated the increase in [Ca(2+)](i) following thapsigargin or anti-CD3 induced store depletion in a similar manner. At low concentrations, 2-APB enhances SOC influx but this enhancement is abrogated in the presence of DCPA. This alteration in [Ca(2+)](i), when exposed to DCPA, significantly reduces nuclear levels of nuclear factor of activated T cells (NFAT) and IL-2 secretion. The plasma membrane polarization profile is not altered by DCPA exposure. Taken together, these data indicate that DCPA inhibits T-cell activation by altering Ca(2+) homeostasis following store depletion.Source
Toxicol Sci. 2008 May;103(1):97-107. Epub 2008 Feb 14. Link to article on publisher's siteDOI
10.1093/toxsci/kfn031Permanent Link to this Item
http://hdl.handle.net/20.500.14038/32902PubMed ID
18281253Related Resources
Link to Article in PubMedae974a485f413a2113503eed53cd6c53
10.1093/toxsci/kfn031