The DNA replication checkpoint directly regulates MBF-dependent G1/S transcription
Authors
Dutta, ChaitaliPatel, Prasanta K.
Rosebrock, Adam
Oliva, Anna
Leatherwood, Janet K.
Rhind, Nicholas R.
UMass Chan Affiliations
Department of Biochemistry and Molecular PharmacologyProgram in Molecular Medicine
Graduate School of Biomedical Sciences
Document Type
Journal ArticlePublication Date
2008-07-30Keywords
Cell Cycle Proteins; DNA Replication; Protein-Serine-Threonine Kinases; Schizosaccharomyces; Schizosaccharomyces pombe Proteins; Transcription Factors; Transcription, GeneticLife Sciences
Medicine and Health Sciences
Metadata
Show full item recordAbstract
The DNA replication checkpoint transcriptionally upregulates genes that allow cells to adapt to and survive replication stress. Our results show that, in the fission yeast Schizosaccharomyces pombe, the replication checkpoint regulates the entire G(1)/S transcriptional program by directly regulating MBF, the G(1)/S transcription factor. Instead of initiating a checkpoint-specific transcriptional program, the replication checkpoint targets MBF to maintain the normal G(1)/S transcriptional program during replication stress. We propose a mechanism for this regulation, based on in vitro phosphorylation of the Cdc10 subunit of MBF by the Cds1 replication-checkpoint kinase. Replacement of two potential phosphorylation sites with phosphomimetic amino acids suffices to promote the checkpoint transcriptional program, suggesting that Cds1 phosphorylation directly regulates MBF-dependent transcription. The conservation of MBF between fission and budding yeast, and recent results implicating MBF as a target of the budding yeast replication checkpoint, suggests that checkpoint regulation of the MBF transcription factor is a conserved strategy for coping with replication stress. Furthermore, the structural and regulatory similarity between MBF and E2F, the metazoan G(1)/S transcription factor, suggests that this checkpoint mechanism may be broadly conserved among eukaryotes.Source
Mol Cell Biol. 2008 Oct;28(19):5977-85. Epub 2008 Jul 28. Link to article on publisher's siteDOI
10.1128/MCB.00596-08Permanent Link to this Item
http://hdl.handle.net/20.500.14038/33020PubMed ID
18662996; 18662996Related Resources
Link to Article in PubMedae974a485f413a2113503eed53cd6c53
10.1128/MCB.00596-08