We are upgrading the repository! A content freeze is in effect until December 6, 2024. New submissions or changes to existing items will not be allowed during this period. All content already published will remain publicly available for searching and downloading. Updates will be posted in the Website Upgrade 2024 FAQ in the sidebar Help menu. Reach out to escholarship@umassmed.edu with any questions.
Authors
Boucher, Jeffrey I.Cote, Pamela
Flynn, Julia M
Jiang, Li
Laban, Aneth
Mishra, Parul
Roscoe, Benjamin P.
Bolon, Daniel N A
Student Authors
Benjamin P. RoscoeUMass Chan Affiliations
Department of Biochemistry and Molecular PharmacologyDocument Type
Journal ArticlePublication Date
2014-10-01
Metadata
Show full item recordAbstract
High-throughput sequencing has enabled many powerful approaches in biological research. Here, we review sequencing approaches to measure frequency changes within engineered mutational libraries subject to selection. These analyses can provide direct estimates of biochemical and fitness effects for all individual mutations across entire genes (and likely compact genomes in the near future) in genetically tractable systems such as microbes, viruses, and mammalian cells. The effects of mutations on experimental fitness can be assessed using sequencing to monitor time-dependent changes in mutant frequency during bulk competitions. The impact of mutations on biochemical functions can be determined using reporters or other means of separating variants based on individual activities (e.g., binding affinity for a partner molecule can be interrogated using surface display of libraries of mutant proteins and isolation of bound and unbound populations). The comprehensive investigation of mutant effects on both biochemical function and experimental fitness provide promising new avenues to investigate the connections between biochemistry, cell physiology, and evolution. We summarize recent findings from systematic mutational analyses; describe how they relate to a field rich in both theory and experimentation; and highlight how they may contribute to ongoing and future research into protein structure-function relationships, systems-level descriptions of cell physiology, and population-genetic inferences on the relative contributions of selection and drift.Source
Genetics. 2014 Oct;198(2):461-71. doi: 10.1534/genetics.114.168351. Link to article on publisher's siteDOI
10.1534/genetics.114.168351Permanent Link to this Item
http://hdl.handle.net/20.500.14038/33420PubMed ID
25316787Related Resources
Link to Article in PubMedae974a485f413a2113503eed53cd6c53
10.1534/genetics.114.168351