• Login
    View Item 
    •   Home
    • UMass Chan Student Research and Publications
    • Morningside Graduate School of Biomedical Sciences
    • Morningside Graduate School of Biomedical Sciences Scholarly Publications
    • View Item
    •   Home
    • UMass Chan Student Research and Publications
    • Morningside Graduate School of Biomedical Sciences
    • Morningside Graduate School of Biomedical Sciences Scholarly Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of eScholarship@UMassChanCommunitiesPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsThis CollectionPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywords

    My Account

    LoginRegister

    Help

    AboutSubmission GuidelinesData Deposit PolicySearchingAccessibilityTerms of UseWebsite Migration FAQ

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The OXR domain defines a conserved family of eukaryotic oxidation resistance proteins

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    kolpak.pdf
    Size:
    1.579Mb
    Format:
    PDF
    Download
    Authors
    Durand, Mathieu
    Kolpak, Adrianne L.
    Farrell, Timothy
    Elliott, Nathan Andrew
    Shao, Wenlin
    Brown, Myles A.
    Volkert, Michael R.
    UMass Chan Affiliations
    Department of Molecular Genetics and Microbiology
    Graduate School of Biomedical Sciences
    Document Type
    Journal Article
    Publication Date
    2007-03-30
    Keywords
    Cell Nucleus; Conserved Sequence; DNA Damage; Escherichia coli; Eukaryotic Cells; Gene Expression Regulation; Humans; Hydrogen Peroxide; Intracellular Signaling Peptides and; Proteins; Multigene Family; *Oxidative Stress; Protein Structure, Tertiary; Proteins; Tumor Cells, Cultured
    Life Sciences
    Medicine and Health Sciences
    
    Metadata
    Show full item record
    Abstract
    BACKGROUND: The NCOA7 gene product is an estrogen receptor associated protein that is highly similar to the human OXR1 gene product, which functions in oxidation resistance. OXR genes are conserved among all sequenced eukaryotes from yeast to humans. In this study we examine if NCOA7 has an oxidation resistance function similar to that demonstrated for OXR1. We also examine NCOA7 expression in response to oxidative stress and its subcellular localization in human cells, comparing these properties with those of OXR1. RESULTS: We find that NCOA7, like OXR1 can suppress the oxidative mutator phenotype when expressed in an E. coli strain that exhibits an oxidation specific mutator phenotype. Moreover, NCOA7's oxidation resistance function requires expression of only its carboxyl-terminal domain and is similar in this regard to OXR1. We find that, in human cells, NCOA7 is constitutively expressed and is not induced by oxidative stress and appears to localize to the nucleus following estradiol stimulation. These properties of NCOA7 are in striking contrast to those of OXR1, which is induced by oxidative stress, localizes to mitochondria, and appears to be excluded, or largely absent from nuclei. CONCLUSION: NCOA7 most likely arose from duplication. Like its homologue, OXR1, it is capable of reducing the DNA damaging effects of reactive oxygen species when expressed in bacteria, indicating the protein has an activity that can contribute to oxidation resistance. Unlike OXR1, it appears to localize to nuclei and interacts with the estrogen receptor. This raises the possibility that NCOA7 encodes the nuclear counterpart of the mitochondrial OXR1 protein and in mammalian cells it may reduce the oxidative by-products of estrogen metabolite-mediated DNA damage.
    Source
    BMC Cell Biol. 2007 Mar 28;8:13. Link to article on publisher's site
    DOI
    10.1186/1471-2121-8-13
    Permanent Link to this Item
    http://hdl.handle.net/20.500.14038/33670
    PubMed ID
    17391516
    Related Resources
    Link to article in PubMed
    ae974a485f413a2113503eed53cd6c53
    10.1186/1471-2121-8-13
    Scopus Count
    Collections
    Morningside Graduate School of Biomedical Sciences Scholarly Publications

    entitlement

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Lamar Soutter Library, UMass Chan Medical School | 55 Lake Avenue North | Worcester, MA 01655 USA
    Quick Guide | escholarship@umassmed.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.