• Login
    View Item 
    •   Home
    • UMass Chan Student Research and Publications
    • Morningside Graduate School of Biomedical Sciences
    • Morningside Graduate School of Biomedical Sciences Scholarly Publications
    • View Item
    •   Home
    • UMass Chan Student Research and Publications
    • Morningside Graduate School of Biomedical Sciences
    • Morningside Graduate School of Biomedical Sciences Scholarly Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of eScholarship@UMassChanCommunitiesPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsThis CollectionPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywords

    My Account

    LoginRegister

    Help

    AboutSubmission GuidelinesData Deposit PolicySearchingAccessibilityTerms of UseWebsite Migration FAQ

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Hormonal regulation of prostaglandin production by rhesus monkey endometrium

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Authors
    Eldering, Joyce A.
    Nay, Merrilyn G.
    Hoberg, Lisa M.
    Longcope, Christopher
    McCracken, John A.
    UMass Chan Affiliations
    Department of Obstetrics/Gynecology
    Department of Cell Biology
    Graduate School of Biomedical Sciences
    Document Type
    Journal Article
    Publication Date
    1990-09-01
    Keywords
    Animals; Culture Techniques; Dinoprostone; Endometrium; Estradiol; Female; Macaca mulatta; Menstrual Cycle; Models, Biological; Ovariectomy; Progesterone; Radioimmunoassay
    Life Sciences
    Medicine and Health Sciences
    
    Metadata
    Show full item record
    Link to Full Text
    https://doi.org/10.1210/jcem-71-3-596
    Abstract
    Although there have been numerous studies on the production of prostaglandins (PGs) by human endometrium in vitro during the menstrual cycle, considerable variation exists in the levels reported during the proliferative vs. the secretory phase. Such variation may be due in part to the difficulty in obtaining endometrium from a precisely known hormonal environment and in part to the use of the different culture systems employed. The aim of the present study was to develop a non-human primate model in which precisely dated endometrial tissue could be obtained reliably. Moreover, PG levels in the endometrium of the rhesus monkey or other primates have not previously been reported during the artificial menstrual cycle. An important objective in establishing such a model was to permit future manipulations of the cycle in vivo [e.g. by omitting the midcycle estradiol (E) peak] to further dissect specific roles of E and progesterone (P) in regulating PG synthesis during the menstrual cycle. Ovariectomized rhesus monkeys were maintained on a standard artificial menstrual cycle via the insertion and removal of Silastic capsules containing E or P. Samples of endometrium (approximately 50 mg) were obtained by hysterotomy under sterile conditions at predetermined stages of separate menstrual cycles: day 9 (midproliferative; n = 5), day 13 (E peak; n = 3), day 14 (1 day post-E peak; n = 5), and day 23 (midsecretory; n = 8). Measurement of the primary PGs in unextracted medium by RIA over 4 days of organ culture indicated PGF2 alpha greater than 6-keto-PGF1 alpha greater than PGE2 greater than thromboxane-B2, PGD2 greater than leukotrienes. PGF2 alpha, the most abundant PG produced on the first day of culture, was low on day 9 and increased dramatically on day 13 (P less than 0.01). On day 14, PGF2 alpha levels fell significantly only 1 day post-E peak (P less than 0.01), while on day 23, after exposure to P in vivo, PGF2 alpha was 10-fold higher (P less than 0.01) than on cycle days 9 and 14. The other PGs measured showed a lower but similar profile at the cycle stages examined. Physiological concentrations of P (5.0 ng/mL) added to cycle day 23 cultures in both the absence and presence of low or high E markedly inhibited the high levels of PGs found in day 23 cultures (P less than 0.01).(ABSTRACT TRUNCATED AT 400 WORDS)
    Source

    J Clin Endocrinol Metab. 1990 Sep;71(3):596-604.

    DOI
    10.1210/jcem-71-3-596
    Permanent Link to this Item
    http://hdl.handle.net/20.500.14038/33673
    PubMed ID
    2394771
    Related Resources

    Link to article in PubMed

    ae974a485f413a2113503eed53cd6c53
    10.1210/jcem-71-3-596
    Scopus Count
    Collections
    Morningside Graduate School of Biomedical Sciences Scholarly Publications

    entitlement

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Lamar Soutter Library, UMass Chan Medical School | 55 Lake Avenue North | Worcester, MA 01655 USA
    Quick Guide | escholarship@umassmed.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.