grp (chk1) replication-checkpoint mutations and DNA damage trigger a Chk2-dependent block at the Drosophila midblastula transition
UMass Chan Affiliations
Department of Molecular Genetics and MicrobiologyProgram in Molecular Medicine
Graduate School of Biomedical Sciences
Document Type
Journal ArticlePublication Date
2007-04-06Keywords
Animals; Blastula; DNA Damage; Drosophila; Drosophila Proteins; Embryonic Development; Female; Male; Protein Kinases; Protein-Serine-Threonine Kinases; Signal TransductionLife Sciences
Medicine and Health Sciences
Metadata
Show full item recordAbstract
The 13 syncytial cleavage divisions that initiate Drosophila embryogenesis are under maternal genetic control. The switch to zygotic regulation of development at the midblastula transition (MBT) follows mitosis 13, when the cleavage divisions terminate, transcription increases and the blastoderm cellularizes. Embryos mutant for grp, which encodes Checkpoint kinase 1 (Chk1), are DNA-replication-checkpoint defective and fail to cellularize, gastrulate or to initiate high-level zygotic transcription at the MBT. The mnk (also known as loki) gene encodes Checkpoint kinase 2 (Chk2), which functions in DNA-damage signal transduction. We show that mnk grp double-mutant embryos are replication-checkpoint defective but cellularize, gastrulate and activate high levels of zygotic gene expression. We also show that grp mutant embryos accumulate DNA double-strand breaks and that DNA-damaging agents induce a mnk-dependent block to cellularization and zygotic gene expression. We conclude that the DNA-replication checkpoint maintains genome integrity during the cleavage divisions, and that checkpoint mutations lead to DNA damage that induces a novel Chk2-dependent block at the MBT.Source
Development. 2007 May;134(9):1737-44. Epub 2007 Apr 4. Link to article on publisher's siteDOI
10.1242/dev.02831Permanent Link to this Item
http://hdl.handle.net/20.500.14038/33847PubMed ID
17409117Related Resources
Link to Article in PubMedae974a485f413a2113503eed53cd6c53
10.1242/dev.02831