A tightly packed hydrophobic cluster directs the formation of an off-pathway sub-millisecond folding intermediate in the alpha subunit of tryptophan synthase, a TIM barrel protein
Name:
Publisher version
View Source
Access full-text PDFOpen Access
View Source
Check access options
Check access options
UMass Chan Affiliations
Department of Biochemistry and Molecular PharmacologyGraduate School of Biomedical Sciences
Document Type
Journal ArticlePublication Date
2007-01-16Keywords
Alanine; Amino Acid Substitution; Circular Dichroism; Enzyme Stability; Hydrogen Bonding; Hydrogen-Ion Concentration; Hydrophobicity; Kinetics; Mutagenesis, Site-Directed; Protein Conformation; Protein Denaturation; *Protein Folding; Protein Renaturation; Protein Structure, Secondary; Protein Structure, Tertiary; Protein Subunits; Salmonella typhimurium; Temperature; Thermodynamics; Tryptophan Synthase; Urea; Variation (Genetics)Life Sciences
Medicine and Health Sciences
Metadata
Show full item recordAbstract
Protein misfolding is now recognized as playing a crucial role in both normal and pathogenic folding reactions. An interesting example of misfolding at the earliest state of a natural folding reaction is provided by the alpha-subunit of tryptophan synthase, a (beta/alpha)(8) TIM barrel protein. The molecular basis for the formation of this off-pathway misfolded intermediate, I(BP), and a subsequent on-pathway intermediate, I1, was probed by mutational analysis of 20 branched aliphatic side-chains distributed throughout the sequence. The elimination of I(BP) and the substantial destabilization of I1 by replacement of a selective set of the isoleucine, leucine or valine residues (ILV) with alanine in a large ILV cluster external-to-the-barrel and spanning the N and C termini (cluster 2) implies tight-packing at most sites in both intermediates. Differential effects on I(BP) and I1 for replacements in alpha3, beta4 and alpha8 at the boundaries of cluster 2 suggest that their incorporation into I1 but not I(BP) reflects non-native folds at the edges of the crucial (beta/alpha)(1-2)beta(3) core in I(BP). The retention of I(BP) and the smaller and consistent destabilization of both I(BP) and I1 by similar replacements in an internal-to-the-barrel ILV cluster (cluster 1) and a second external-to-the-barrel ILV cluster (cluster 3) imply molten globule-like packing. The tight packing inferred, in part, for I(BP) or for all of I1 in cluster 2, but not in clusters 1 and 3, may reflect the larger size of cluster 2 and/or the enhanced number of isoleucine, leucine and valine self-contacts in and between contiguous elements of secondary structure. Tightly packed ILV-dominated hydrophobic clusters could serve as an important driving force for the earliest events in the folding and misfolding of the TIM barrel and other members of the (beta/alpha)(n) class of proteins.Source
J Mol Biol. 2007 Mar 9;366(5):1624-38. Epub 2006 Dec 15. Link to article on publisher's siteDOI
10.1016/j.jmb.2006.12.005Permanent Link to this Item
http://hdl.handle.net/20.500.14038/33856PubMed ID
17222865Related Resources
Link to Article in PubMedae974a485f413a2113503eed53cd6c53
10.1016/j.jmb.2006.12.005
Scopus Count
Related items
Showing items related by title, author, creator and subject.
-
Dynamic Regulation at the Neuronal Plasma Membrane: Novel Endocytic Mechanisms Control Anesthetic-Activated Potassium Channels and Amphetamine-Sensitive Dopamine Transporters: A DissertationGabriel, Luke R. (2013-06-13)Endocytic trafficking dynamically regulates neuronal plasma membrane protein presentation and activity, and plays a central role in excitability and plasticity. Over the course of my dissertation research I investigated endocytic mechanisms regulating two neuronal membrane proteins: the anesthetic-activated potassium leak channel, KCNK3, as well as the psychostimulant-sensitive dopamine transporter (DAT). My results indicate that KCNK3 internalizes in response to Protein Kinase C (PKC) activation, using a novel pathway that requires the phosphoserine binding protein, 14-3-3β, and demonstrates for the first time regulated KCNK3 channel trafficking in neurons. Additionally, PKC-mediated KCNK3 trafficking requires a non-canonical endocytic motif, which is shared exclusively between KCNK3 and sodium-dependent neurotransmitter transporters, such as DAT. DAT trafficking studies in intact ex vivo adult striatal slices indicate that DAT endocytic trafficking has both dynamin-dependent and –independent components. Moreover, DAT segregates into two populations at the neuronal plasma membrane: trafficking-competent and -incompetent. Taken together, these results demonstrate that novel, non-classical endocytic mechanisms dynamically control the plasma membrane presentation of these two important neuronal proteins.
-
Selective interaction of JNK protein kinase isoforms with transcription factorsGupta, Shashi; Barrett, Tamera; Whitmarsh, Alan J.; Cavanagh, Julie; Sluss, Hayla Karen; Derijard, Benoit; Davis, Roger J. (1996-06-03)The JNK protein kinase is a member of the MAP kinase group that is activated in response to dual phosphorylation on threonine and tyrosine. Ten JNK isoforms were identified in human brain by molecular cloning. These protein kinases correspond to alternatively spliced isoforms derived from the JNK1, JNK2 and JNK3 genes. The protein kinase activity of these JNK isoforms was measured using the transcription factors ATF2, Elk-1 and members of the Jun family as substrates. Treatment of cells with interleukin-1 (IL-1) caused activation of the JNK isoforms. This activation was blocked by expression of the MAP kinase phosphatase MKP-1. Comparison of the binding activity of the JNK isoforms demonstrated that the JNK proteins differ in their interaction with ATF2, Elk-1 and Jun transcription factors. Individual members of the JNK group may therefore selectively target specific transcription factors in vivo.
-
Role of the Raf/mitogen-activated protein kinase pathway in p21ras desensitizationKlarlund, Jes K.; Cherniack, Andrew D.; McMahon, Martin; Czech, Michael P. (1996-07-12)Desensitization of p21(ras) after stimulation of cells by growth factors and phorbol 12-myristate 13-acetate (PMA) correlates with hyperphosphorylation of the guanine nucleotide exchange factor Son-of-sevenless (Sos) and its dissociation from the adaptor protein Grb2 (Cherniack, A., Klarlund, J. K., Conway, B. R., and Czech, M. P. (1995) J. Biol. Chem. 270, 1485-1488). To test the role of the Raf/mitogen-activated protein (MAP) kinase pathway, we utilized cells expressing a chimera composed of the catalytic domain of p74Raf-1 and the hormone binding domain of the estradiol receptor (DeltaRaf-1:ER). Estradiol markedly stimulated DeltaRaf-1:ER and the downstream MEK and MAP kinases in these cells as well as Sos phosphorylation. However, the dissociation of Grb2 from Sos observed in response to PMA was not apparent upon DeltaRaf-1:ER activation. Furthermore, stimulation of DeltaRaf-1:ER did not impair GTP loading of p21(ras) in response to platelet-derived growth factor or epidermal growth factor. We conclude that activation of the Raf/MAP kinase pathway alone in these cells is insufficient to cause disassembly of Sos from Grb2 or to interrupt the ability of Sos to catalyze activation of p21(ras).