Show simple item record

dc.contributor.authorHovhannisyan, Hayk
dc.contributor.authorCho, Brian C.
dc.contributor.authorMitra, Partha
dc.contributor.authorMontecino, Martin A.
dc.contributor.authorStein, Gary S.
dc.contributor.authorVan Wijnen, Andre J.
dc.contributor.authorStein, Janet L.
dc.date2022-08-11T08:08:58.000
dc.date.accessioned2022-08-23T16:14:35Z
dc.date.available2022-08-23T16:14:35Z
dc.date.issued2003-01-31
dc.date.submitted2008-10-09
dc.identifier.citation<p>Mol Cell Biol. 2003 Feb;23(4):1460-9.</p>
dc.identifier.issn0270-7306 (Print)
dc.identifier.doi10.1128/MCB.23.4.1460-1469.2003
dc.identifier.pmid12556504
dc.identifier.urihttp://hdl.handle.net/20.500.14038/33893
dc.description.abstractDuring the shutdown of proliferation and onset of differentiation of HL-60 promyelocytic leukemia cells, expression of the cell cycle-dependent histone genes is downregulated at the level of transcription. To address the mechanism by which this regulation occurs, we examined the chromatin structure of the histone H4/n (FO108, H4FN) gene locus. Micrococcal nuclease, DNase I, and restriction enzymes show similar cleavage sites and levels of sensitivity at the H4/n locus in both proliferating and differentiated HL-60 cells. In contrast, differentiation-related activation of the cyclin-dependent kinase inhibitor p21(cip1/WAF1) gene is accompanied by increased nuclease hypersensitivity. Chromatin immunoprecipitation assays of the H4/n gene reveal that acetylated histones H3 and H4 are maintained at the same levels in proliferating and postproliferative cells. Thus, the chromatin of the H4/n locus remains in an open state even after transcription ceases. Using ligation-mediated PCR to visualize genomic DNase I footprints at single-nucleotide resolution, we find that protein occupancy at the site II cell cycle element is selectively diminished in differentiated cells while the site I element remains occupied. Decreased occupancy of site II is reflected by loss of the site II binding protein HiNF-P. We conclude that H4 gene transcription during differentiation is downregulated by modulating protein interaction at the site II cell cycle element and that retention of an open chromatin conformation may be associated with site I occupancy.
dc.language.isoen_US
dc.relation<p><a href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12556504&dopt=Abstract">Link to article in PubMed</a></p>
dc.relation.urlhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC141140/
dc.subjectAcetylation; Cell Cycle; Cell Differentiation; Cell Lineage; Chromatin; Deoxyribonuclease I; Down-Regulation; Gene Expression Regulation; HL-60 Cells; Histones; Humans; Macrophages; Micrococcal Nuclease; Monocytes; Nucleosomes; Promoter Regions (Genetics); Proteins; Regulatory Sequences, Nucleic Acid; Repressor Proteins; Restriction Mapping; Transcription Factors
dc.subjectLife Sciences
dc.subjectMedicine and Health Sciences
dc.titleMaintenance of open chromatin and selective genomic occupancy at the cell cycle-regulated histone H4 promoter during differentiation of HL-60 promyelocytic leukemia cells
dc.typeJournal Article
dc.source.journaltitleMolecular and cellular biology
dc.source.volume23
dc.source.issue4
dc.identifier.legacycoverpagehttps://escholarship.umassmed.edu/gsbs_sp/549
dc.identifier.contextkey646734
html.description.abstract<p>During the shutdown of proliferation and onset of differentiation of HL-60 promyelocytic leukemia cells, expression of the cell cycle-dependent histone genes is downregulated at the level of transcription. To address the mechanism by which this regulation occurs, we examined the chromatin structure of the histone H4/n (FO108, H4FN) gene locus. Micrococcal nuclease, DNase I, and restriction enzymes show similar cleavage sites and levels of sensitivity at the H4/n locus in both proliferating and differentiated HL-60 cells. In contrast, differentiation-related activation of the cyclin-dependent kinase inhibitor p21(cip1/WAF1) gene is accompanied by increased nuclease hypersensitivity. Chromatin immunoprecipitation assays of the H4/n gene reveal that acetylated histones H3 and H4 are maintained at the same levels in proliferating and postproliferative cells. Thus, the chromatin of the H4/n locus remains in an open state even after transcription ceases. Using ligation-mediated PCR to visualize genomic DNase I footprints at single-nucleotide resolution, we find that protein occupancy at the site II cell cycle element is selectively diminished in differentiated cells while the site I element remains occupied. Decreased occupancy of site II is reflected by loss of the site II binding protein HiNF-P. We conclude that H4 gene transcription during differentiation is downregulated by modulating protein interaction at the site II cell cycle element and that retention of an open chromatin conformation may be associated with site I occupancy.</p>
dc.identifier.submissionpathgsbs_sp/549
dc.contributor.departmentDepartment of Cell Biology
dc.contributor.departmentGraduate School of Biomedical Sciences
dc.source.pages1460-9


This item appears in the following Collection(s)

Show simple item record