• Login
    View Item 
    •   Home
    • UMass Chan Student Research and Publications
    • Morningside Graduate School of Biomedical Sciences
    • Morningside Graduate School of Biomedical Sciences Scholarly Publications
    • View Item
    •   Home
    • UMass Chan Student Research and Publications
    • Morningside Graduate School of Biomedical Sciences
    • Morningside Graduate School of Biomedical Sciences Scholarly Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of eScholarship@UMassChanCommunitiesPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsThis CollectionPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywords

    My Account

    LoginRegister

    Help

    AboutSubmission GuidelinesData Deposit PolicySearchingAccessibilityTerms of UseWebsite Migration FAQ

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Cdc2 tyrosine phosphorylation is not required for the S-phase DNA damage checkpoint in fission yeast

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Authors
    Kommajosyula, Naveen
    Rhind, Nicholas R.
    UMass Chan Affiliations
    Department of Biochemistry and Molecular Pharmacology
    Graduate School of Biomedical Sciences
    Document Type
    Journal Article
    Publication Date
    2006-11-15
    Keywords
    CDC2 Protein Kinase; Cell Cycle; Cell Cycle Proteins; Cell Nucleus; *DNA Damage; Flow Cytometry; *Gene Expression Regulation, Fungal; Genotype; Phosphorylation; *S Phase; Schizosaccharomyces; Time Factors; Tyrosine
    Life Sciences
    Medicine and Health Sciences
    
    Metadata
    Show full item record
    Link to Full Text
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2562503/
    Abstract
    The S-phase DNA damage checkpoint slows replication when damage occurs during S phase. Cdc25, which activates Cdc2 by dephosphorylating tyrosine-15, has been shown to be a downstream target of the checkpoint in metazoans, but its role is not clear in fission yeast. The dephosphorylation of Cdc2 has been assumed not to play a role in S-phase regulation because cells replicate in the absence of Cdc25, demonstrating that tyrosine-15 phosphorylated dc2 is sufficient for S phase. However, it has been reported recently that Cdc25 is involved in the slowing of S phase in response to damage in fission yeast, suggesting a modulatory role for Cdc2 dephosphorylation in S phase. We have investigated the role of Cdc25 and the tyrosine phosphorylation of Cdc2 in the S-phase damage checkpoint, and our results show that Cdc2 phosphorylation is not a target of the checkpoint. The checkpoint was not compromised in a Cdc25 overexpressing strain, a strain carrying nonphosphorylatable form of Cdc2, or in a strain lacking Cdc25. Our results are consistent with a strictly Cdc2-Y15 phosphorylation-independent mechanism of the fission yeast S-phase DNA damage checkpoint.
    Source

    Cell Cycle. 2006 Nov 1;5(21):2495-500. Epub 2006 Sep 19.

    DOI
    10.4161/cc.5.21.3423
    Permanent Link to this Item
    http://hdl.handle.net/20.500.14038/33968
    PubMed ID
    17102632
    Related Resources

    Link to article in PubMed

    ae974a485f413a2113503eed53cd6c53
    10.4161/cc.5.21.3423
    Scopus Count
    Collections
    Morningside Graduate School of Biomedical Sciences Scholarly Publications

    entitlement

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Lamar Soutter Library, UMass Chan Medical School | 55 Lake Avenue North | Worcester, MA 01655 USA
    Quick Guide | escholarship@umassmed.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.